基于YOLOv8来如何使用森林火灾检测图像数据集进行训练,并构建一个基于深度学习的火灾检测系统

森林火灾检测图像数据集 nc=1 标签names: [‘Fire’]
名称:【‘火’】共7793张,近似9:1比例划分,标注txt格式。可直接用于模型训练。在这里插入图片描述
基于YOLOv8来如何使用森林火灾检测图像数据集进行训练,并构建一个基于深度学习的火灾检测系统。

一、准备工作

安装依赖

首先,确保你的环境中已经安装了必要的库和工具。如果还没有安装YOLOv8及其相关依赖,请先进行安装:

pip install ultralytics

在这里插入图片描述

数据集准备

根据您的描述,数据集已经被划分成训练集和验证集,并且标注文件格式为YOLO适用的txt格式。请确保数据集的结构如下:
在这里插入图片描述

fire_dataset/
├── images/
│   ├── train/
│   └── val/
└── labels/
    ├── train/
    └── val/

同时,在fire_dataset/目录下创建一个名为data.yaml的数据配置文件,内容如下:

train: ./fire_dataset/images/train/
val: ./fire_dataset/images/val/

nc: 1
names: ['Fire']

二、模型训练

使用YOLOv8进行训练

在准备好数据集之后,可以使用以下命令开始训练YOLOv8模型:

yolo task=detect mode=train model=yolov8s.pt data=fire_dataset/data.yaml epochs=100 imgsz=640 batch=16

这里的参数可以根据自己的需求调整,比如增加或减少epochs的数量以控制训练周期,调整imgsz来适应输入图片的尺寸等。

三、构建火灾检测系统

完成训练后,你可以利用训练好的模型进行推理,从而构建一个火灾检测系统。下面是一个简单的Python脚本示例,演示如何加载训练好的模型并对新的图片进行预测。

from ultralytics import YOLO
import cv2

# 加载训练好的模型
model = YOLO('runs/detect/train/weights/best.pt')

def detect_fire(image_path):
    # 对图片进行预测
    results = model(image_path)
    for r in results:
        # 解析结果并绘制边界框
        for box in r.boxes:
            x1, y1, x2, y2 = [int(i) for i in box.xyxy]
            conf = float(box.conf)
            cls = int(box.cls)
            label = f'Fire {conf:.2f}'
            cv2.rectangle(cv2.imread(image_path), (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(cv2.imread(image_path), label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
    
    # 显示结果
    img = cv2.imread(image_path)
    cv2.imshow('Fire Detection', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 示例:对单张图片进行火灾检测
detect_fire('path/to/test_image.jpg')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值