森林火灾检测图像数据集 nc=1 标签names: [‘Fire’]
名称:【‘火’】共7793张,近似9:1比例划分,标注txt格式。可直接用于模型训练。
基于YOLOv8来如何使用森林火灾检测图像数据集进行训练,并构建一个基于深度学习的火灾检测系统。
一、准备工作
安装依赖
首先,确保你的环境中已经安装了必要的库和工具。如果还没有安装YOLOv8及其相关依赖,请先进行安装:
pip install ultralytics
数据集准备
根据您的描述,数据集已经被划分成训练集和验证集,并且标注文件格式为YOLO适用的txt格式。请确保数据集的结构如下:
fire_dataset/
├── images/
│ ├── train/
│ └── val/
└── labels/
├── train/
└── val/
同时,在fire_dataset/
目录下创建一个名为data.yaml
的数据配置文件,内容如下:
train: ./fire_dataset/images/train/
val: ./fire_dataset/images/val/
nc: 1
names: ['Fire']
二、模型训练
使用YOLOv8进行训练
在准备好数据集之后,可以使用以下命令开始训练YOLOv8模型:
yolo task=detect mode=train model=yolov8s.pt data=fire_dataset/data.yaml epochs=100 imgsz=640 batch=16
这里的参数可以根据自己的需求调整,比如增加或减少epochs
的数量以控制训练周期,调整imgsz
来适应输入图片的尺寸等。
三、构建火灾检测系统
完成训练后,你可以利用训练好的模型进行推理,从而构建一个火灾检测系统。下面是一个简单的Python脚本示例,演示如何加载训练好的模型并对新的图片进行预测。
from ultralytics import YOLO
import cv2
# 加载训练好的模型
model = YOLO('runs/detect/train/weights/best.pt')
def detect_fire(image_path):
# 对图片进行预测
results = model(image_path)
for r in results:
# 解析结果并绘制边界框
for box in r.boxes:
x1, y1, x2, y2 = [int(i) for i in box.xyxy]
conf = float(box.conf)
cls = int(box.cls)
label = f'Fire {conf:.2f}'
cv2.rectangle(cv2.imread(image_path), (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(cv2.imread(image_path), label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# 显示结果
img = cv2.imread(image_path)
cv2.imshow('Fire Detection', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 示例:对单张图片进行火灾检测
detect_fire('path/to/test_image.jpg')