Attention+UNet!完美应用医学图像分割

2024深度学习发论文&模型涨点之——Attention+UNet

Attention U-Net通过在UNet架构中引入注意力机制,有效地提高了图像分割任务的性能,尤其是在医学图像分割领域。它通过动态地关注和选择感兴趣的图像区域,提高了分割的准确性和精细度。

UNet的网络结构并不复杂,最主要的特点便是U型结构和skip-connection。而Attention UNet则是使用了标准的UNet的网络架构,并在这基础上整合进去了Attention机制。更准确来说,是将Attention机制整合进了跳远连接(skip-connection)。

我整理了一些Attention+UNet【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取

论文精选

论文1:

Attention U-Net: Learning Where to Look for the Pancreas

Attention U-Net:学习寻找胰腺的位置

方法

注意力门(AG)模型:提出了一种新的注意力门模型,用于医学成像,自动学习关注不同形状和大小的目标结构。

集成到U-Net模型:将注意力门集成到标准的U-Net模型中,以最小的计算开销提高模型的敏感性和预测准确性。

多类图像分割:在两个大型CT腹部数据集上评估提出的Attention U-Net架构,用于多类图像分割。

软区域提议:在测试时ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值