2024深度学习发论文&模型涨点之——Attention+UNet
Attention U-Net通过在UNet架构中引入注意力机制,有效地提高了图像分割任务的性能,尤其是在医学图像分割领域。它通过动态地关注和选择感兴趣的图像区域,提高了分割的准确性和精细度。
UNet的网络结构并不复杂,最主要的特点便是U型结构和skip-connection。而Attention UNet则是使用了标准的UNet的网络架构,并在这基础上整合进去了Attention机制。更准确来说,是将Attention机制整合进了跳远连接(skip-connection)。
我整理了一些Attention+UNet【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取
论文精选
论文1:
Attention U-Net: Learning Where to Look for the Pancreas
Attention U-Net:学习寻找胰腺的位置
方法
注意力门(AG)模型:提出了一种新的注意力门模型,用于医学成像,自动学习关注不同形状和大小的目标结构。
集成到U-Net模型:将注意力门集成到标准的U-Net模型中,以最小的计算开销提高模型的敏感性和预测准确性。
多类图像分割:在两个大型CT腹部数据集上评估提出的Attention U-Net架构,用于多类图像分割。
软区域提议:在测试时ÿ