2025深度学习发论文&模型涨点之——动态特征融合
动态特征融合(Dynamic Feature Fusion, DFF)是深度学习中一种用于融合多个特征的方法,通过动态学习调整每个特征的重要性,并将它们融合在一起以获得更准确的结果。
DFF旨在基于全局信息自适应地融合多尺度局部特征图。它通过动态机制在融合过程中选择重要特征,以解决传统方法在特征融合方面的不足,提升模型对复杂数据的处理能力。例如在医学图像分割中,不同器官的形状和大小差异较大,传统方法难以有效融合多尺度特征,而DFF可以根据全局信息动态地调整不同尺度特征的权重,从而更好地捕捉和利用这些特征。
我整理了一些动态特征融合【论文+代码】合集,需要的同学工种耗【AI创新工场】自取。
论文精选
论文1:
E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation
E2ENet:动态稀疏特征融合用于准确高效的3D医学图像分割
方法
动态稀疏特征融合(DSFF)机制:自适应地学习融合多尺度特征,同时减少冗余信息。
限制深度偏移的3D卷积:利用3D空间信息,同时保持模型和计算复杂度与2D方法相当。
CNN骨干网络:提取多尺度特征图,通过多个阶段逐步聚合特征。
深度监督策略:使用不同尺度的地面真实分割的下采样版本和相应的预测来计算损失。
</