基于CNN-LSTM的时序预测MATLAB实战

卷积神经网络(CNN)用于提取时间序列数据中的局部空间特征,通过卷积层和池化层的堆叠,CNN能够有效捕获数据中的短期模式和局部依赖关系。长短时记忆网络(LSTM)用于处理时间序列数据,特别擅长捕捉数据中的长期依赖关系,LSTM通过引入门控机制和记忆单元来解决长期依赖问题。基于CNN-LSTM的时序预测结合上述两种网络的优点,同时考虑了时空特征,模型通常能够获得更高的预测精度。

一、算法原理

1.1 CNN原理 

卷积神经网络具有局部连接、权值共享和空间相关等特性。卷积神经网络结构包含卷积层、激活层和池化层。

(a)二维卷积层将滑动卷积滤波器应用于输入。该层通过沿输入垂直和水平方向 移动滤波器对输入进行卷积,并计算权重与输入的点积,然后加入一个偏置项。具体表达式为:

图片

卷积层的功能是对输入数据进行特征提取,其内部包含多个卷积核,也称为感受野。将输入图像和卷积核做卷积运算,可以增强原始信号特征的同时降低噪声,卷积运算的具体过程如图所示。

图片

CNN-LSTM模型是一种结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的深度学习模型,常用于时序预测任务。在Matlab中,可以使用Deep Learning Toolbox来实现CNN-LSTM模型的时序预测。 以下是一个简单的CNN-LSTM模型的示例代码: ```matlab % 数据准备 data = % your time series data; numFeatures = % number of input features; numResponses = % number of output responses; sequenceLength = % length of input time series sequence; % 划分训练集和测试集 numObservations = numel(data(:,1)); XTrain = data(1:round(numObservations*0.7),1:numFeatures); YTrain = data(1:round(numObservations*0.7),(numFeatures+1):(numFeatures+numResponses)); XTest = data(round(numObservations*0.7)+1:end,1:numFeatures); YTest = data(round(numObservations*0.7)+1:end,(numFeatures+1):(numFeatures+numResponses)); % 创建CNN-LSTM模型 numHiddenUnits = 100; layers = [ sequenceInputLayer(numFeatures) convolution2dLayer([1 3],8,'Padding','same') batchNormalizationLayer reluLayer sequenceFoldingLayer('Name','fold') lstmLayer(numHiddenUnits,'OutputMode','last') dropoutLayer(0.5) fullyConnectedLayer(numResponses) regressionLayer]; % 模型训练 options = trainingOptions('adam', ... 'MaxEpochs',100, ... 'MiniBatchSize',64, ... 'SequenceLength',sequenceLength, ... 'Shuffle','never', ... 'Plots','training-progress'); net = trainNetwork(XTrain',YTrain',layers,options); % 模型预测 YPred = predict(net,XTest','MiniBatchSize',1); % 结果可视化 figure plot(YTest) hold on plot(YPred) legend(["Observed" "Predicted"]) ylabel("Y") xlabel("Time") ``` 在这个示例中,我们首先准备了时序数据,并将其划分为训练集和测试集。然后,我们创建了一个包含卷积层、批归一化层、激活层、折叠层、LSTM层、dropout层、全连接层和回归层的CNN-LSTM模型。接着,我们使用训练数据对模型进行训练,并使用测试数据对模型进行预测。最后,我们将观测值和预测值可视化以进行比较。 需要注意的是,这只是一个简单的示例,实际应用中可能需要对模型结构和参数进行调整以获得更好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值