基于深度神经网络DNN的数据回归,时序,分类预测Matlab程序

基于深度神经网络DNN的数据回归,时序,分类预测Matlab程序

可以利用智能优化算法对DNN中的隐含层神经元个数,学习率,正则化系数进行寻优
粒子群,遗传,麻雀,鲸鱼等优化器
在这里插入图片描述

以下是一个完整的 MATLAB 实现,展示了如何使用 深度神经网络(DNN) 进行 回归、时序预测和分类任务,并结合 智能优化算法(粒子群 PSO、遗传 GA、麻雀 SSA、鲸鱼 WOA) 对 DNN 的超参数(如隐含层神经元数量、学习率、正则化系数等)进行自动寻优。


🧠 功能概述

✅ 支持任务类型:

  • 回归预测
  • 时序预测
  • 分类预测

✅ 支持的智能优化算法:

  • 粒子群优化(PSO)
  • 遗传算法(GA)
  • 麻雀搜索算法(SSA)
  • 鲸鱼优化算法(WOA)

✅ 优化目标:

  • 隐含层神经元个数(整数)
  • 学习率(浮点数)
  • 正则化系数(L2 正则化系数)

📁 文件结构

  1. main.m:主程序入口
  2. dnn_train_evaluate.m:训练与评估 DNN 模型
  3. pso_optimize.m / ga_optimize.m / ssa_optimize.m / woa_optimize.m:不同优化器实现
  4. data_regression.mat / data_timeseries.mat / data_classification.mat:示例数据集

📌 示例代码

1️⃣ 主程序 main.m

clear; clc; close all;

% 选择任务类型: 'regression', 'timeseries', 'classification'
taskType = 'regression';

% 加载数据集
if strcmp(taskType, 'regression')
    load('data_regression.mat');   % X: 输入特征, Y: 输出值
elseif strcmp(taskType, 'timeseries')
    load('data_timeseries.mat');   % X: 时间序列输入, Y: 目标输出
else
    load('data_classification.mat'); % X: 特征, Y: 标签 (one-hot)
end

% 数据划分
idx = randperm(size(X, 1));
X = X(idx, :); Y = Y(idx, :);
trainRatio = 0.8;
nTrain = floor(trainRatio * size(X, 1));
XTrain = X(1:nTrain, :); YTrain = Y(1:nTrain, :);
XTest = X(nTrain+1:end, :); YTest = Y(nTrain+1:end, :);

% 超参数范围定义
lb = [5, 0.001, 0.0001];  % 下限:[神经元数, 学习率, L2系数]
ub = [64, 0.1, 0.1];      % 上限

% 选择优化算法:'pso', 'ga', 'ssa', 'woa'
optimizer = 'pso';

% 调用优化函数
switch optimizer
    case 'pso'
        bestParams = pso_optimize(XTrain, YTrain, XTest, YTest, taskType, lb, ub);
    case 'ga'
        bestParams = ga_optimize(XTrain, YTrain, XTest, YTest, taskType, lb, ub);
    case 'ssa'
        bestParams = ssa_optimize(XTrain, YTrain, XTest, YTest, taskType, lb, ub);
    case 'woa'
        bestParams = woa_optimize(XTrain, YTrain, XTest, YTest, taskType, lb, ub);
end

% 显示最优参数
fprintf('最优参数:神经元=%d, 学习率=%.4f, L2=%.6f\n', ...
        round(bestParams(1)), bestParams(2), bestParams(3));

% 使用最优参数重新训练模型
[net, loss] = dnn_train_evaluate(XTrain, YTrain, XTest, YTest, taskType, round(bestParams(1)), bestParams(2), bestParams(3));

% 可视化结果
YPred = predict(net, XTest);
figure;
plot(YTest, 'b-o');
hold on;
plot(YPred, 'r--x');
legend('真实值', '预测值');
title('预测结果对比');
grid on;

2️⃣ DNN 训练与评估 dnn_train_evaluate.m

function [net, loss] = dnn_train_evaluate(XTrain, YTrain, XTest, YTest, taskType, numNeurons, learningRate, l2Factor)
    layers = [
        featureInputLayer(size(XTrain,2))
        fullyConnectedLayer(numNeurons)
        reluLayer
        fullyConnectedLayer(numNeurons)
        reluLayer
        fullyConnectedLayer(size(YTrain,2))];

    if strcmp(taskType, 'classification')
        layers(end+1) = softmaxLayer;
        layers(end+1) = classificationLayer;
        options = trainingOptions('adam', ...
            'InitialLearnRate', learningRate, ...
            'L2Regularization', l2Factor, ...
            'MaxEpochs', 100, ...
            'ValidationData',{XTest,YTest}, ...
            'Plots','training-progress',...
            'Verbose',false);
    else
        layers(end+1) = regressionLayer;
        options = trainingOptions('adam', ...
            'InitialLearnRate', learningRate, ...
            'L2Regularization', l2Factor, ...
            'MaxEpochs', 100, ...
            'ValidationData',{XTest,YTest}, ...
            'Plots','training-progress',...
            'Verbose',false);
    end

    net = trainNetwork(XTrain, YTrain, layers, options);
    YPred = predict(net, XTest);

    if strcmp(taskType, 'classification')
        [~, predictedLabels] = max(YPred, [], 2);
        [~, trueLabels] = max(YTest, [], 2);
        accuracy = mean(predictedLabels == trueLabels);
        loss = 1 - accuracy;
    else
        loss = mse(YPred - YTest);
    end
end

3️⃣ 粒子群优化 pso_optimize.m

function bestParams = pso_optimize(XTrain, YTrain, XTest, YTest, taskType, lb, ub)
    nPop = 20;
    maxIter = 30;
    dim = length(lb);
    w = 0.8; c1 = 1.5; c2 = 1.5;

    % 初始化种群
    popPos = lb + (ub - lb) .* rand(nPop, dim);
    popVel = 0.1 * (ub - lb) .* rand(nPop, dim);
    fitness = zeros(nPop, 1);
    for i = 1:nPop
        fitness(i) = dnn_train_evaluate(XTrain, YTrain, XTest, YTest, taskType, ...
                                        round(popPos(i,1)), popPos(i,2), popPos(i,3));
    end

    pBest = popPos;
    pBestFitness = fitness;
    [~, gBestIdx] = min(fitness);
    gBest = popPos(gBestIdx, :);

    % 迭代优化
    for iter = 1:maxIter
        for i = 1:nPop
            popVel(i,:) = w*popVel(i,:) + ...
                          c1*rand().*(pBest(i,:) - popPos(i,:)) + ...
                          c2*rand().*(gBest - popPos(i,:));
            popPos(i,:) = max(min(popPos(i,:) + popVel(i,:), ub), lb);

            % 计算适应度
            fitness(i) = dnn_train_evaluate(XTrain, YTrain, XTest, YTest, taskType, ...
                                            round(popPos(i,1)), popPos(i,2), popPos(i,3));
        end

        % 更新 pBest 和 gBest
        for i = 1:nPop
            if fitness(i) < pBestFitness(i)
                pBest(i,:) = popPos(i,:);
                pBestFitness(i) = fitness(i);
            end
        end
        [~, gBestIdx] = min(pBestFitness);
        gBest = pBest(gBestIdx, :);
        fprintf('迭代 %d 最佳损失: %.4f\n', iter, pBestFitness(gBestIdx));
    end

    bestParams = gBest;
end

4️⃣ 其他优化算法模板(略)

你可以按照 pso_optimize.m 的格式实现其他优化算法(GA/SSA/WOA),只需替换更新策略即可。例如:

  • GA:使用轮盘赌选择 + 单点交叉 + 变异
  • SSA:模拟麻雀觅食行为
  • WOA:模仿座头鲸包围猎物机制

📦 数据集准备

你需要准备自己的数据集文件,格式如下:

  • data_regression.mat:包含 X, Y
  • data_timeseries.mat:包含 X, Y
  • data_classification.mat:包含 X, Y(one-hot 编码)

你可以使用 xlsread()csvread() 导入 Excel 或 CSV 数据。


📈 扩展建议

  • 增加 Batch Normalization、Dropout 层
  • 添加更多隐藏层(构建更深层的 DNN)
  • 结合贝叶斯优化、网格搜索等方法
  • 使用 LSTM 处理时间序列任务
  • 多目标优化(精度 vs 速度)

🚀 如果你希望我提供:

✅ Python + TensorFlow/Keras 版本
✅ 自带标准数据集(如 Boston 房价、MNIST、Airline Passenger)
✅ GUI 界面(App Designer)
✅ 并行计算加速版本

在这里插入图片描述
,我们可以使用Python和Keras库来构建一个简单的神经网络,并使用Matplotlib库来绘制训练进度图。

以下是一个示例代码,展示如何使用Keras训练一个简单的神经网络,并使用Matplotlib绘制训练和验证损失曲线:

2. 导入必要的库

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

3. 准备数据

这里我们使用一个简单的回归任务作为示例。

# 生成一些随机数据作为示例
np.random.seed(0)
X = np.random.rand(1000, 1) * 10
y = 2 * X + 1 + np.random.randn(1000, 1) * 0.5

# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)

4. 构建和训练模型

# 构建神经网络模型
model = Sequential([
    Dense(64, activation='relu', input_shape=(1,)),
    Dense(32, activation='relu'),
    Dense(1)
])

# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse')

# 训练模型
history = model.fit(
    X_train, y_train,
    validation_data=(X_val, y_val),
    epochs=1200,
    batch_size=32,
    verbose=0
)

5. 绘制训练和验证损失曲线

# 提取训练和验证损失
train_loss = history.history['loss']
val_loss = history.history['val_loss']

# 绘制损失曲线
plt.figure(figsize=(12, 6))

# 上半部分:训练和验证损失
plt.subplot(2, 1, 1)
plt.plot(train_loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

# 下半部分:缩放后的损失曲线
plt.subplot(2, 1, 2)
plt.plot(train_loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Zoomed Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.xlim(0, 1200)
plt.ylim(0, 0.15)
plt.legend()

plt.tight_layout()
plt.show()

运行结果

上半部分展示了整个训练过程中的训练和验证损失变化,下半部分则是对损失曲线的局部放大,以便更清晰地观察后期的收敛情况。

注意事项

  • 如果你的数据集较大或模型较复杂,训练时间可能会较长,可以考虑使用GPU加速。
  • 在实际应用中,建议结合早停法(Early Stopping)、学习率衰减等策略进一步优化训练过程。
  • 在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值