基于YOLOv8+pyqt5的课堂行为检测系统

基于YOLOv8+pyqt5的课堂行为检测系统

可以替换训练的模型,实现检测目标自定义

完整源码源文件+已标注的数据集+训练好的模型+环境配置教程+程序运行说明文档

Python + PyQt5可视化界面

可对图片,视频,摄像头进行识别

在这里插入图片描述

构建一个基于YOLOv8的害虫检测系统可以帮助农业领域实现精准的病虫害管理,提高作物产量和质量。以下是一个完整的指南,包括环境配置、模型训练(或使用预训练模型)、以及如何创建一个简单的用户界面来展示害虫检测结果。

环境准备

首先,确保你的环境中安装了必要的库:

pip install ultralytics opencv-python pyqt5 numpy matplotlib

数据集与模型

对于特定于害虫的数据集,你可能需要自己收集并标注数据,或者寻找公开可用的相关数据集。假设你已经有了适用于YOLOv8格式的数据集,下面将介绍如何利用YOLOv8进行训练和预测。

模型训练(可选)

如果你已经有了一定规模的标记数据集,你可以使用YOLOv8进行训练。以下是基本命令示例:

yolo task=detect mode=train model=yolov8n.pt data=path/to/your/pests.yaml epochs=100 imgsz=640

请确保pests.yaml文件正确配置了训练和验证数据路径、类别数量及名称。例如:

train: ./images/train/
val: ./images/val/

nc: 3 # 假设有3种害虫
names: ['Aphid', 'Beetle', 'Moth']

在这里插入图片描述

创建GUI应用程序

接下来,我们将创建一个简单的PyQt5 GUI应用,它允许用户上传图片,并使用YOLOv8模型检测图片中的害虫。

示例代码:GUI 应用程序主窗口
import sys
import cv2
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton, QFileDialog, QVBoxLayout, QWidget
from PyQt5.QtGui import QPixmap, QImage
from PyQt5.QtCore import Qt
from ultralytics import YOLO


class PestDetectionApp(QMainWindow):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("害虫检测系统 - YOLOv8")
        self.setGeometry(100, 100, 800, 600)

        # 加载YOLOv8模型
        self.model = YOLO('best.pt')  # 替换为你的模型路径

        self.initUI()

    def initUI(self):
        layout = QVBoxLayout()

        self.image_label = QLabel(self)
        self.image_label.setAlignment(Qt.AlignCenter)
        self.image_label.setStyleSheet("border: 1px solid black;")
        self.image_label.setFixedSize(760, 500)
        layout.addWidget(self.image_label)

        upload_button = QPushButton("上传图片", self)
        upload_button.clicked.connect(self.upload_image)
        layout.addWidget(upload_button)

        self.setLayout(layout)

        container = QWidget()
        container.setLayout(layout)
        self.setCentralWidget(container)

    def upload_image(self):
        file_name, _ = QFileDialog.getOpenFileName(self, "选择图片", "", "Image Files (*.png *.jpg *.jpeg)")
        if file_name:
            self.detect_and_show(file_name)

    def detect_and_show(self, image_path):
        results = self.model(image_path)  # 进行预测
        annotated_frame = results[0].plot()  # 获取绘制了边界框的图像

        # 将图像转换为QPixmap显示
        rgb_image = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
        h, w, ch = rgb_image.shape
        bytes_per_line = ch * w
        qt_image = QImage(rgb_image.data, w, h, bytes_per_line, QImage.Format_RGB888)
        pixmap = QPixmap.fromImage(qt_image).scaled(
            self.image_label.width(), self.image_label.height(), Qt.KeepAspectRatio
        )
        self.image_label.setPixmap(pixmap)


if __name__ == "__main__":
    app = QApplication(sys.argv)
    window = PestDetectionApp()
    window.show()
    sys.exit(app.exec_())

实时视频检测(可选功能)

如果你想实现从摄像头获取实时视频流并进行害虫检测,可以在上述代码中添加如下方法,并在界面上增加相应的按钮来启动和停止视频捕捉。

def start_camera(self):
    cap = cv2.VideoCapture(0)
    while True:
        ret, frame = cap.read()
        if not ret:
            break

        results = self.model(frame)
        annotated_frame = results[0].plot()

        cv2.imshow("Real-time Detection", annotated_frame)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

然后,在GUI初始化部分添加一个按钮来触发这个方法:

camera_button = QPushButton("开启摄像头检测", self)
camera_button.clicked.connect(self.start_camera)
layout.addWidget(camera_button)

总结

通过上述步骤,我们创建了一个基本的害虫检测系统,它可以对上传的图片进行分析,并使用YOLOv8模型检测其中的害虫。此外,还提供了扩展到实时视频检测的功能。你可以进一步优化和扩展这个系统,例如加入更多种类的害虫识别、提高检测精度、优化性能等。这不仅有助于提高农业生产效率,还能促进农业可持续发展。

### 使用 YOLOv8PyQt5 实现智能车牌检测 #### 构建YOLOv8模型用于车牌检测 为了构建一个高效的车牌检测系统,可以采用YOLOv8作为目标检测模块。此版本的YOLO提供了更快的速度以及更高的精度,在处理实时视频流或者图像序列中的车辆及其牌照方面表现出色[^1]。 ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载预训练的小型YOLOv8模型 ``` #### 设计PyQt5图形用户界面(GUI) 利用PyQt5创建直观易用的应用程序前端来展示检测结果是非常合适的。GUI的设计应该考虑到用户体验,比如提供文件选择器让用户加载图片或视频文件,并显示处理后的输出画面[^2]。 ```python import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QVBoxLayout, QWidget, QPushButton, QFileDialog from PyQt5.QtGui import QPixmap from PIL import Image import cv2 class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("License Plate Detection with YOLOv8 and PyQt5") layout = QVBoxLayout() self.label_image = QLabel(self) layout.addWidget(self.label_image) btn_select_file = QPushButton('Select File') btn_select_file.clicked.connect(self.load_image) layout.addWidget(btn_select_file) container = QWidget() container.setLayout(layout) self.setCentralWidget(container) def load_image(self): fname, _ = QFileDialog.getOpenFileName(self, 'Open file', '', "Image files (*.jpg *.png)") if fname: pixmap = QPixmap(fname).scaled(640, 480) image = Image.open(fname) results = model(image) # 调用YOLOv8进行预测 annotated_frame = results[0].plot() # 获取带有标注框的结果帧 cv2.imwrite('output.jpg', annotated_frame[:, :, ::-1]) # 将BGR转RGB并保存 output_pixmap = QPixmap('output.jpg').scaled(640, 480) self.label_image.setPixmap(output_pixmap) if __name__ == '__main__': app = QApplication(sys.argv) window = MainWindow() window.show() sys.exit(app.exec_()) ``` 上述代码片段展示了如何集成YOLOv8的目标检测功能到PyQt5开发的应用程序中去。通过这种方式,不仅可以方便地测试不同的输入样本,而且还能让最终用户更加友好地与软件互动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值