如何使用python实现租房房价分析与预测项目
关键内容:数据可视化➕LGBM模型➕神经网络
包含内容:数据集➕ppt➕文档➕代码
文章目录
使用Python实现租房房价分析与预测项目,通常涉及数据收集、数据清洗、探索性数据分析(EDA)、特征工程、模型选择、训练和评估等步骤。下面我将给出一个简化的示例流程,并附上一些基础代码片段帮助你入门。
1. 数据收集
首先,你需要获取关于租房房价的数据集。可以从公开数据源下载,如Kaggle,或者通过网络爬虫从房产网站抓取数据。这里假设你已经有了一个CSV格式的数据集rental_prices.csv
。
2. 导入必要的库
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
import seaborn as sns
3. 数据加载与初步检查
# 加载数据
data = pd.read_csv('rental_prices.csv')
# 查看前几行数据
print(data.head())
# 检查数据的基本信息
print(data.info())
# 统计描述
print(data.describe())
4. 数据清洗
根据你的数据特点进行清洗工作,比如处理缺失值、重复值等。
# 删除缺失值
data.dropna(inplace=True)
# 删除重复记录
data.drop_duplicates(inplace=True)
5. 探索性数据分析 (EDA)
使用可视化工具来探索数据分布、识别异常值等。
# 直方图
data['price'].hist(bins=30)
plt.show()
# 相关矩阵
corr_matrix = data.corr()
sns.heatmap(corr_matrix, annot=True)
plt.show()
6. 特征工程
选择或创建对模型有用的特征。
# 假设我们只用'size'作为特征,'price'为目标变量
X = data[['size']]
y = data['price']
7. 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
8. 模型选择与训练
这里以线性回归为例。
model = LinearRegression()
model.fit(X_train, y_train)
9. 模型评估
predictions = model.predict(X_test)
# 计算均方误差和R^2分数
mse = mean_squared_error(y_test, predictions)
r2 = r2_score(y_test, predictions)
print(f'Mean Squared Error: {mse}')
print(f'R^2 Score: {r2}')
10. 结果可视化
plt.scatter(X_test, y_test, color='black', label='Real values')
plt.plot(X_test, predictions, color='blue', linewidth=3, label='Predicted')
plt.xlabel('Size')
plt.ylabel('Price')
plt.legend()
plt.show()
以上是使用Python进行简单租房房价分析与预测的全流程示例。请注意,实际项目中可能需要更复杂的数据预处理、特征工程以及尝试不同的模型来提升预测性能。