基于YOLOv8➕pyqt5的轨道缺陷检测系统
内含1593张轨道缺陷数据集
包括[‘Crack’, ‘Putus’, ‘Spalling’, ‘Squat’],4类
文章目录
以下是一个基于 YOLOv8 + PyQt5 的轨道缺陷检测系统的完整实现方案,包括:环境搭建、模型训练、GUI 设计和集成推理代码。适用于铁路轨道裂纹、松动、变形等缺陷的检测。
🧠 项目概述
本项目使用 YOLOv8 目标检测模型 来识别轨道图像中的缺陷(如裂纹、缺失部件等),并通过 PyQt5 构建图形界面,支持上传图像或实时视频流进行检测,并可视化结果。
🛠️ 环境配置
安装依赖项:
pip install torch torchvision torchaudio opencv-python PyQt5 ultralytics
ultralytics
是 YOLOv8 的官方库。- 如果使用 GPU,请安装对应版本的 PyTorch。
📁 数据准备
- 准备一个包含轨道缺陷的图像数据集(如:裂纹、松动扣件等)。
- 使用标注工具(如LabelImg)标注每个缺陷的位置,生成
.txt
标签文件。 - 数据结构如下:
dataset/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
└── data.yaml
data.yaml
示例:
train: dataset/images/train/
val: dataset/images/val/
nc: 2 # 缺陷类别数,比如 crack, loose_part
names: ['crack', 'loose_part']
🏋️ 模型训练(YOLOv8)
使用 Ultralytics 提供的 CLI 工具进行训练:
yolo train model=yolov8s.pt data=data.yaml epochs=100 imgsz=640 batch=16
训练完成后会生成权重文件,路径为:
runs/detect/train/weights/best.pt
🖥️ PyQt5 GUI 实现
下面是一个完整的 PyQt5 图形界面程序,可以加载图像并调用 YOLOv8 进行轨道缺陷检测。
文件:track_defect_gui.py
import sys
import cv2
from PyQt5.QtWidgets import QApplication, QLabel, QWidget, QPushButton, QVBoxLayout, QFileDialog
from PyQt5.QtGui import QPixmap, QImage
from PyQt5.QtCore import Qt
from pathlib import Path
from ultralytics import YOLO
# 加载 YOLOv8 模型
model = YOLO('runs/detect/train/weights/best.pt') # 替换为你自己的 best.pt 路径
class TrackDefectApp(QWidget):
def __init__(self):
super().__init__()
self.setWindowTitle("轨道缺陷检测系统")
self.setGeometry(100, 100, 800, 600)
self.image_label = QLabel("图像显示区域", self)
self.image_label.setAlignment(Qt.AlignCenter)
self.btn_open = QPushButton("打开图像", self)
self.btn_open.clicked.connect(self.open_image)
layout = QVBoxLayout()
layout.addWidget(self.image_label)
layout.addWidget(self.btn_open)
self.setLayout(layout)
def open_image(self):
fname, _ = QFileDialog.getOpenFileName(self, "选择图像", "", "Image Files (*.png *.jpg *.jpeg)")
if fname:
self.detect_and_show(fname)
def detect_and_show(self, image_path):
# 使用 YOLOv8 进行推理
results = model(image_path)
# 获取带有检测框的图像
result_img = results[0].plot()
# 将图像转换为 QImage 显示在 QLabel 上
result_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB)
h, w, ch = result_img.shape
bytes_per_line = ch * w
qt_image = QImage(result_img.data, w, h, bytes_per_line, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(qt_image).scaled(self.image_label.width(), self.image_label.height(), Qt.KeepAspectRatio)
self.image_label.setPixmap(pixmap)
if __name__ == '__main__':
app = QApplication(sys.argv)
window = TrackDefectApp()
window.show()
sys.exit(app.exec_())
📸 可选:添加摄像头实时检测功能
在上面基础上增加一个按钮,用于开启摄像头进行实时检测:
def start_camera(self):
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
results = model(frame)
annotated_frame = results[0].plot()
annotated_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
h, w, ch = annotated_frame.shape
bytes_per_line = ch * w
qt_image = QImage(annotated_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(qt_image).scaled(self.image_label.width(), self.image_label.height(), Qt.KeepAspectRatio)
self.image_label.setPixmap(pixmap)
QApplication.processEvents()
📌 注意事项
- 如果使用自定义数据集,请确保标签与模型输出匹配。
- 推荐使用GPU加速推理,提升处理速度。
- 可以将该系统扩展为工业质检系统,接入相机或无人机采集图像。
- 如需打包成
.exe
可使用pyinstaller
。
🚀 总结
你现在已经拥有一个完整的 基于 YOLOv8 和 PyQt5 的轨道缺陷检测系统,它具备以下功能:
- 图像上传识别
- 缺陷目标定位
- 图形化界面展示
- 可拓展为实时视频检测或部署到工业现场