基于YOLOv8➕pyqt5的轨道缺陷检测系统

基于YOLOv8➕pyqt5的轨道缺陷检测系统

内含1593张轨道缺陷数据集
包括[‘Crack’, ‘Putus’, ‘Spalling’, ‘Squat’],4类

在这里插入图片描述
以下是一个基于 YOLOv8 + PyQt5 的轨道缺陷检测系统的完整实现方案,包括:环境搭建、模型训练、GUI 设计和集成推理代码。适用于铁路轨道裂纹、松动、变形等缺陷的检测。


🧠 项目概述

本项目使用 YOLOv8 目标检测模型 来识别轨道图像中的缺陷(如裂纹、缺失部件等),并通过 PyQt5 构建图形界面,支持上传图像或实时视频流进行检测,并可视化结果。


🛠️ 环境配置

安装依赖项:

pip install torch torchvision torchaudio opencv-python PyQt5 ultralytics
  • ultralytics 是 YOLOv8 的官方库。
  • 如果使用 GPU,请安装对应版本的 PyTorch。

📁 数据准备

  1. 准备一个包含轨道缺陷的图像数据集(如:裂纹、松动扣件等)。
  2. 使用标注工具(如LabelImg)标注每个缺陷的位置,生成 .txt 标签文件。
  3. 数据结构如下:
dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/
└── data.yaml
  1. data.yaml 示例:
train: dataset/images/train/
val: dataset/images/val/

nc: 2  # 缺陷类别数,比如 crack, loose_part
names: ['crack', 'loose_part']

在这里插入图片描述

🏋️ 模型训练(YOLOv8)

使用 Ultralytics 提供的 CLI 工具进行训练:

yolo train model=yolov8s.pt data=data.yaml epochs=100 imgsz=640 batch=16

训练完成后会生成权重文件,路径为:

runs/detect/train/weights/best.pt

🖥️ PyQt5 GUI 实现

下面是一个完整的 PyQt5 图形界面程序,可以加载图像并调用 YOLOv8 进行轨道缺陷检测。

文件:track_defect_gui.py

import sys
import cv2
from PyQt5.QtWidgets import QApplication, QLabel, QWidget, QPushButton, QVBoxLayout, QFileDialog
from PyQt5.QtGui import QPixmap, QImage
from PyQt5.QtCore import Qt
from pathlib import Path
from ultralytics import YOLO

# 加载 YOLOv8 模型
model = YOLO('runs/detect/train/weights/best.pt')  # 替换为你自己的 best.pt 路径


class TrackDefectApp(QWidget):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("轨道缺陷检测系统")
        self.setGeometry(100, 100, 800, 600)

        self.image_label = QLabel("图像显示区域", self)
        self.image_label.setAlignment(Qt.AlignCenter)

        self.btn_open = QPushButton("打开图像", self)
        self.btn_open.clicked.connect(self.open_image)

        layout = QVBoxLayout()
        layout.addWidget(self.image_label)
        layout.addWidget(self.btn_open)
        self.setLayout(layout)

    def open_image(self):
        fname, _ = QFileDialog.getOpenFileName(self, "选择图像", "", "Image Files (*.png *.jpg *.jpeg)")
        if fname:
            self.detect_and_show(fname)

    def detect_and_show(self, image_path):
        # 使用 YOLOv8 进行推理
        results = model(image_path)

        # 获取带有检测框的图像
        result_img = results[0].plot()

        # 将图像转换为 QImage 显示在 QLabel 上
        result_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB)
        h, w, ch = result_img.shape
        bytes_per_line = ch * w
        qt_image = QImage(result_img.data, w, h, bytes_per_line, QImage.Format_RGB888)
        pixmap = QPixmap.fromImage(qt_image).scaled(self.image_label.width(), self.image_label.height(), Qt.KeepAspectRatio)

        self.image_label.setPixmap(pixmap)


if __name__ == '__main__':
    app = QApplication(sys.argv)
    window = TrackDefectApp()
    window.show()
    sys.exit(app.exec_())

📸 可选:添加摄像头实时检测功能

在上面基础上增加一个按钮,用于开启摄像头进行实时检测:

    def start_camera(self):
        cap = cv2.VideoCapture(0)
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            results = model(frame)
            annotated_frame = results[0].plot()
            annotated_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
            h, w, ch = annotated_frame.shape
            bytes_per_line = ch * w
            qt_image = QImage(annotated_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
            pixmap = QPixmap.fromImage(qt_image).scaled(self.image_label.width(), self.image_label.height(), Qt.KeepAspectRatio)
            self.image_label.setPixmap(pixmap)
            QApplication.processEvents()

📌 注意事项

  1. 如果使用自定义数据集,请确保标签与模型输出匹配。
  2. 推荐使用GPU加速推理,提升处理速度。
  3. 可以将该系统扩展为工业质检系统,接入相机或无人机采集图像。
  4. 如需打包成 .exe 可使用 pyinstaller

🚀 总结

你现在已经拥有一个完整的 基于 YOLOv8 和 PyQt5 的轨道缺陷检测系统,它具备以下功能:

  • 图像上传识别
  • 缺陷目标定位
  • 图形化界面展示
  • 可拓展为实时视频检测或部署到工业现场
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值