基于YOLOv8+pyqt5的农作物识别检测系统

基于YOLOv8+pyqt5的农作物识别检测系统

内含CWC数据集
包含蓝草、藜、刺菜、玉米、莎草、棉花、茄属植物、番茄、天鹅绒、生菜、萝卜,11类农作物

也可自行替换模型,使用该界面做其他,实现检测目标自定义

完整源码源文件+已标注的数据集+训练好的模型+环境配置教程+程序运行说明文档

在这里插入图片描述

构建一个基于YOLOv8和PyQt5的农作物识别检测系统是一个非常有趣且实用的项目。这个系统可以用于自动识别和分类不同的农作物,帮助提高农业生产的效率。下面将为你提供一个大致的实现框架,包括如何使用YOLOv8进行目标检测以及如何使用PyQt5创建用户界面。

准备工作

  1. 安装必要的库:确保你的环境中已经安装了必要的Python库,如torch, opencv-python, 和 PyQt5。你可以通过pip来安装这些库:

    pip install torch opencv-python PyQt5
    
  2. 获取或训练YOLOv8模型:你需要一个已经训练好的YOLOv8模型,该模型能够识别你感兴趣的农作物类别。如果没有现成的模型,你可能需要自己收集数据并训练模型。
    在这里插入图片描述

代码示例

以下是一个简单的示例代码,演示了如何结合YOLOv8和PyQt5来创建一个基本的农作物识别检测系统:

import sys
from PyQt5.QtWidgets import QApplication, QLabel, QVBoxLayout, QWidget
from PyQt5.QtGui import QImage, QPixmap
import cv2
import torch

# 假设YOLOv8模型已经加载
model = torch.hub.load('ultralytics/yolov8', 'custom', path_or_model='path/to/your/model.pt') 

class CropDetectionApp(QWidget):
    def __init__(self):
        super().__init__()
        self.initUI()
        
    def initUI(self):
        self.setWindowTitle('农作物识别检测系统')
        self.setGeometry(100, 100, 800, 600)
        
        self.image_label = QLabel(self)
        layout = QVBoxLayout()
        layout.addWidget(self.image_label)
        self.setLayout(layout)
        
        # 示例中直接读取图像,实际应用中可以通过摄像头或其他方式获取
        img = cv2.imread('path/to/your/image.jpg')
        results = model(img)
        
        # 绘制检测结果
        img_plot = results.render()[0]
        self.display_image(img_plot)
        
    def display_image(self, img):
        qformat = QImage.Format_Indexed8
        if len(img.shape) == 3:
            if img.shape[2] == 4:
                qformat = QImage.Format_RGBA8888
            else:
                qformat = QImage.Format_RGB888
        
        out_img = QImage(img, img.shape[1], img.shape[0], img.strides[0], qformat)
        out_img = out_img.rgbSwapped()
        self.image_label.setPixmap(QPixmap.fromImage(out_img))
        self.image_label.setScaledContents(True)

if __name__ == '__main__':
    app = QApplication(sys.argv)
    ex = CropDetectionApp()
    ex.show()
    sys.exit(app.exec_())

在这里插入图片描述

说明

  • YOLOv8模型加载:在这个例子中,我们假设你已经有了一个预训练好的YOLOv8模型,并通过torch.hub.load函数加载它。
  • 图像处理与显示:我们使用OpenCV读取图像,并使用YOLOv8模型进行预测。然后,将检测结果绘制在原始图像上,并通过PyQt5显示出来。
  • PyQt5界面:我们创建了一个简单的窗口应用程序,其中包含一个用于显示图像的标签。通过调整布局,我们可以轻松地扩展界面以添加更多的控件和功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值