基于YOLOv8+pyqt5的农作物识别检测系统
内含CWC数据集
包含蓝草、藜、刺菜、玉米、莎草、棉花、茄属植物、番茄、天鹅绒、生菜、萝卜,11类农作物
也可自行替换模型,使用该界面做其他,实现检测目标自定义
完整源码源文件+已标注的数据集+训练好的模型+环境配置教程+程序运行说明文档
构建一个基于YOLOv8和PyQt5的农作物识别检测系统是一个非常有趣且实用的项目。这个系统可以用于自动识别和分类不同的农作物,帮助提高农业生产的效率。下面将为你提供一个大致的实现框架,包括如何使用YOLOv8进行目标检测以及如何使用PyQt5创建用户界面。
准备工作
-
安装必要的库:确保你的环境中已经安装了必要的Python库,如
torch
,opencv-python
, 和PyQt5
。你可以通过pip来安装这些库:pip install torch opencv-python PyQt5
-
获取或训练YOLOv8模型:你需要一个已经训练好的YOLOv8模型,该模型能够识别你感兴趣的农作物类别。如果没有现成的模型,你可能需要自己收集数据并训练模型。
代码示例
以下是一个简单的示例代码,演示了如何结合YOLOv8和PyQt5来创建一个基本的农作物识别检测系统:
import sys
from PyQt5.QtWidgets import QApplication, QLabel, QVBoxLayout, QWidget
from PyQt5.QtGui import QImage, QPixmap
import cv2
import torch
# 假设YOLOv8模型已经加载
model = torch.hub.load('ultralytics/yolov8', 'custom', path_or_model='path/to/your/model.pt')
class CropDetectionApp(QWidget):
def __init__(self):
super().__init__()
self.initUI()
def initUI(self):
self.setWindowTitle('农作物识别检测系统')
self.setGeometry(100, 100, 800, 600)
self.image_label = QLabel(self)
layout = QVBoxLayout()
layout.addWidget(self.image_label)
self.setLayout(layout)
# 示例中直接读取图像,实际应用中可以通过摄像头或其他方式获取
img = cv2.imread('path/to/your/image.jpg')
results = model(img)
# 绘制检测结果
img_plot = results.render()[0]
self.display_image(img_plot)
def display_image(self, img):
qformat = QImage.Format_Indexed8
if len(img.shape) == 3:
if img.shape[2] == 4:
qformat = QImage.Format_RGBA8888
else:
qformat = QImage.Format_RGB888
out_img = QImage(img, img.shape[1], img.shape[0], img.strides[0], qformat)
out_img = out_img.rgbSwapped()
self.image_label.setPixmap(QPixmap.fromImage(out_img))
self.image_label.setScaledContents(True)
if __name__ == '__main__':
app = QApplication(sys.argv)
ex = CropDetectionApp()
ex.show()
sys.exit(app.exec_())
说明
- YOLOv8模型加载:在这个例子中,我们假设你已经有了一个预训练好的YOLOv8模型,并通过
torch.hub.load
函数加载它。 - 图像处理与显示:我们使用OpenCV读取图像,并使用YOLOv8模型进行预测。然后,将检测结果绘制在原始图像上,并通过PyQt5显示出来。
- PyQt5界面:我们创建了一个简单的窗口应用程序,其中包含一个用于显示图像的标签。通过调整布局,我们可以轻松地扩展界面以添加更多的控件和功能。