基于matlab控制系统simulink仿真,pid控制,模糊pid,模糊免疫pid,遗传算法优化pid和模糊神经网络pid控制

matlab控制系统simulink仿真,pid控制,模糊pid,模糊免疫pid,遗传算法优化pid和模糊神经网络pid控制;温度控制,流量控制,比值控制,串级控制,PID参数整定,文章复现。
在这里插入图片描述

以下是基于MATLAB和Simulink的控制系统仿真框架,涵盖了PID控制、模糊PID、模糊免疫PID、遗传算法优化PID和模糊神经网络PID控制。我们将以温度控制为例进行代码实现,并提供Simulink模型的构建思路。


1. PID 控制

PID控制器是经典的控制方法,可以直接通过MATLAB脚本或Simulink实现。

MATLAB 实现
% PID 控制器参数
Kp = 1.0; % 比例增益
Ki = 0.1; % 积分增益
Kd = 0.01; % 微分增益

% 系统参数
dt = 0.01; % 时间步长
time = 0:dt:10; % 仿真时间
setpoint = 50; % 目标温度
current_temp = 20; % 初始温度
integral = 0;
prev_error = 0;

% 存储结果
temp_history = zeros(size(time));
control_signal = zeros(size(time));

for i = 1:length(time)
    error = setpoint - current_temp; % 误差
    integral = integral + error * dt; % 积分项
    derivative = (error - prev_error) / dt; % 微分项
    
    % PID 控制输出
    output = Kp * error + Ki * integral + Kd * derivative;
    
    % 更新系统状态 (假设简单的一阶惯性系统)
    current_temp = current_temp + dt * (output - current_temp);
    
    % 保存数据
    temp_history(i) = current_temp;
    control_signal(i) = output;
    
    % 更新误差
    prev_error = error;
end

% 绘图
figure;
subplot(2,1,1);
plot(time, temp_history, 'b', 'LineWidth', 1.5);
hold on;
plot(time, setpoint * ones(size(time)), 'r--', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Temperature');
legend('Current Temperature', 'Setpoint');
title('PID Control');

subplot(2,1,2);
plot(time, control_signal, 'g', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Control Signal');
Simulink 实现

在Simulink中,可以使用 PID Controller 模块来实现上述逻辑:

  1. 添加一个 Step 模块作为目标温度。
  2. 使用 PID Controller 模块设置 Kp, Ki, Kd 参数。
  3. 连接一个传递函数模块(例如 1/(s+1))作为被控对象。
  4. 使用 Scope 观察输出。

2. 模糊 PID 控制

模糊PID结合了传统PID控制和模糊逻辑,动态调整PID参数。

MATLAB 实现
% 初始化模糊逻辑控制器
fis = mamfis; % 创建模糊推理系统
fis = addInput(fis, [-10 10], 'Name', 'Error'); % 输入:误差
fis = addInput(fis, [-1 1], 'Name', 'DeltaError'); % 输入:误差变化率
fis = addOutput(fis, [0 2], 'Name', 'KpAdj'); % 输出:比例增益调整
fis = addOutput(fis, [0 0.2], 'Name', 'KiAdj'); % 输出:积分增益调整
fis = addOutput(fis, [0 0.02], 'Name', 'KdAdj'); % 输出:微分增益调整

% 定义模糊规则
rules = [
    "Error==NB & DeltaError==NB => KpAdj=PB, KiAdj=PB, KdAdj=PB";
    "Error==NM & DeltaError==NM => KpAdj=PM, KiAdj=PM, KdAdj=PM";
    "Error==NS & DeltaError==NS => KpAdj=PS, KiAdj=PS, KdAdj=PS";
    "Error==ZE & DeltaError==ZE => KpAdj=ZE, KiAdj=ZE, KdAdj=ZE";
    "Error==PS & DeltaError==PS => KpAdj=NS, KiAdj=NS, KdAdj=NS";
    "Error==PM & DeltaError==PM => KpAdj=NM, KiAdj=NM, KdAdj=NM";
    "Error==PB & DeltaError==PB => KpAdj=NB, KiAdj=NB, KdAdj=NB"
];
fis = addRule(fis, rules);

% 模拟模糊PID控制
Kp_base = 1.0; Ki_base = 0.1; Kd_base = 0.01;
current_temp = 20; integral = 0; prev_error = 0;

for i = 1:length(time)
    error = setpoint - current_temp;
    delta_error = (error - prev_error) / dt;
    
    % 模糊推理计算PID参数调整值
    input_values = [error, delta_error];
    output_values = evalfis(fis, input_values);
    Kp_adj = output_values(1);
    Ki_adj = output_values(2);
    Kd_adj = output_values(3);
    
    Kp = Kp_base + Kp_adj;
    Ki = Ki_base + Ki_adj;
    Kd = Kd_base + Kd_adj;
    
    % PID 控制输出
    integral = integral + error * dt;
    derivative = delta_error;
    output = Kp * error + Ki * integral + Kd * derivative;
    
    % 更新系统状态
    current_temp = current_temp + dt * (output - current_temp);
    
    % 保存数据
    temp_history(i) = current_temp;
    control_signal(i) = output;
    
    prev_error = error;
end

% 绘图同上

3. 遗传算法优化 PID

遗传算法用于优化PID参数。

MATLAB 实现
% 目标函数:最小化误差平方和
function error = pid_fitness(params)
    Kp = params(1);
    Ki = params(2);
    Kd = params(3);
    
    % 模拟PID控制
    dt = 0.01;
    time = 0:dt:10;
    setpoint = 50;
    current_temp = 20;
    integral = 0;
    prev_error = 0;
    errors = [];
    
    for i = 1:length(time)
        error = setpoint - current_temp;
        integral = integral + error * dt;
        derivative = (error - prev_error) / dt;
        
        output = Kp * error + Ki * integral + Kd * derivative;
        current_temp = current_temp + dt * (output - current_temp);
        errors = [errors, error^2];
        prev_error = error;
    end
    
    error = sum(errors); % 返回误差平方和
end

% 遗传算法优化
options = optimoptions('ga', 'PopulationSize', 50, 'MaxGenerations', 100);
params = ga(@(params) pid_fitness(params), 3, [], [], [], [], [0 0 0], [10 1 1], [], options);
disp(['Optimized PID Parameters: Kp = ', num2str(params(1)), ...
      ', Ki = ', num2str(params(2)), ', Kd = ', num2str(params(3))]);

4. 模糊神经网络 PID

模糊神经网络结合了模糊逻辑和神经网络的学习能力。

MATLAB 实现
% 使用模糊神经网络工具箱
net = anfis(training_data); % 训练模糊神经网络
output = evalfis(net, input_data); % 推理输出

Simulink 模型

对于所有控制方法,可以在Simulink中搭建如下模型:

  1. 输入信号StepSine Wave
  2. 控制器PID Controller 或自定义模糊逻辑/神经网络模块。
  3. 被控对象:传递函数或状态空间模型。
  4. 输出观察ScopeTo Workspace

在这里插入图片描述
为了实现图中的PID控制系统的Simulink模型,我们可以按照以下步骤进行。这个模型包括一个PID控制器和一个被控对象(例如一个传递函数)。以下是详细的步骤和代码:

1. 创建Simulink模型

步骤:
  1. 打开MATLAB并启动Simulink。
  2. 创建一个新的Simulink模型。
  3. 添加必要的模块。
模块列表:
  • Step:用于生成阶跃输入信号。
  • Sum:用于计算误差(目标值与实际值的差)。
  • PID Controller:用于实现PID控制。
  • Transfer Fcn:用于模拟被控对象。
  • Scope:用于观察输出信号。

2. 连接模块

连接步骤:
  1. Step模块的输出连接到Sum模块的第一个输入端。
  2. Sum模块的输出连接到PID Controller模块的输入端。
  3. PID Controller模块的输出连接到Transfer Fcn模块的输入端。
  4. Transfer Fcn模块的输出连接到Scope模块的输入端。
  5. Transfer Fcn模块的输出反馈回Sum模块的第二个输入端(减法)。

3. 设置参数

参数设置:
  1. Step:设置为初始时间为0秒,最终值为1。
  2. PID Controller:设置比例增益 (K_p)、积分增益 (K_i) 和微分增益 (K_d)。
  3. Transfer Fcn:设置传递函数参数。

4. MATLAB脚本

以下是一个完整的MATLAB脚本,用于创建和运行上述Simulink模型:

% 清除工作区和关闭所有图形窗口
clear all;
close all;

% 创建新的Simulink模型
model = 'PID_Control_System';
open_system(model);

% 添加模块
add_block('simulink/Sources/Step', [model '/Step']);
add_block('simulink/Commonly Used Blocks/Sum', [model '/Sum']);
add_block('simulink/Continuous/PID Controller', [model '/PID Controller']);
add_block('simulink/Continuous/Transfer Fcn', [model '/Transfer Fcn']);
add_block('simulink/Sinks/Scope', [model '/Scope']);

% 设置模块参数
set_param([model '/Step'], 'InitialTime', '0');
set_param([model '/Step'], 'FinalValue', '1');

set_param([model '/PID Controller'], 'P', '1');
set_param([model '/PID Controller'], 'I', '0.1');
set_param([model '/PID Controller'], 'D', '0.01');

set_param([model '/Transfer Fcn'], 'Numerator', '[1]');
set_param([model '/Transfer Fcn'], 'Denominator', '[1 0.5]');

% 连接模块
add_line(model, 'Step/1', 'Sum/1');
add_line(model, 'Sum/1', 'PID Controller/1');
add_line(model, 'PID Controller/1', 'Transfer Fcn/1');
add_line(model, 'Transfer Fcn/1', 'Scope/1');
add_line(model, 'Transfer Fcn/1', 'Sum/2');

% 运行仿真
sim(model);

% 显示结果
open_system([model '/Scope']);

5. 解释

  • Step:生成一个阶跃信号作为输入。
  • Sum:计算误差(目标值与实际值的差)。
  • PID Controller:根据误差计算PID控制信号。
  • Transfer Fcn:模拟被控对象的动态特性。
  • Scope:显示输出信号。

6. 运行模型

运行上述脚本后,Simulink将自动打开,并且你可以在Scope中观察到输出信号的变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值