详解AI大模型提示工程(prompt)、向量工程(embedding)、微调工程(fine-tune)

大家都在讨论大模型,似乎什么都可以与大模型结合,可当初学者也想上手时,却面临令人头大的词汇,Prompt、Embedding、Fine-tuning,怎么办呢?别担心,本文就用一种有趣的方式让大家认识它们。

首先让我们先了解一下作为人类是如何去使用大模型的。我们可以把大模型当做一个对语言有着出色理解能力的人,我们要做的就是通过文本的输入,让大模型理解我们希望他做什么事情。那么学会向大模型提问,就变成了用好大模型最重要的事情,甚至可以说使用大模型的过程就是向大模型提问的过程。

那么有哪些概念需要我们了解呢?

Prompt

是输入给大模型的文本,用来提示或引导大模型给出符合预期的输出。我们向大模型提问的文本就是提示词,而大模型在理解了我们的提示词后在提示词的下面会给出对应的回答。

Prompt = 提示词 = 人与大模型交互的媒介

打个比方,假如我们是产品经理,大模型是一名研发工程师的话,那么提示词就是需求,产品经理在提需求的时候,需要在需求里面包含背景说明、需求说明、版本要求、方案建议等信息,只有把需求描述得足够清晰,工程师才能够按照需求输出符合要求的代码,提示词就相当于人向大模型提需求时的需求文档。

image

Token

我们可以经常在大模型的计费说明中看到Token这个词,Token是大模型处理的最小单元,比如英文单词或者汉字。

image

Token长度 = 与大模型交互时使用的单词、汉字数

不同的人表达同一件事情时,有的人言简意赅几句话就能把事情说得明明白白,而有的人较啰嗦,那么明显啰嗦的人在描述这件事情上消耗的Token就比前面那个人多了很多。

Emdedding

是将段落文本编码成固定维度的向量,便于进行语义相似度的比较。

image

我们可以理解成把知识数据向量化成一个数据库,是为了方便检索,这让用户在提问的时候,我们就可以根据用户的提问内容,在数据库中提取相关度比较高的材料,一起给到大模型,这样大模型就能用这些专业的知识做出更加具备专业水平的回答了。

image

打个比方,Emdedding就像是当一个项目启动时,项目经理把待完成需求所依据的额外相关材料先整理好,提取重点后放在附件中给到研发工程师,便于研发工程师高效的输出符合预期的东西。

Fine-Tune

在已经训练好的模型基础上进一步调整模型的过程吗,是一种使用高质量数据对模型参数进行微调的知识迁移技术,目的是让模型更匹配对特定任务的理解。

image

我们可以把大模型类比为公司的研发人员,根据需求生产出对应的产品,而每个研发人员的开发经验都有所不同,输出的代码风格质量也不一样。这就像每个大模型背后使用的训练数据和方法不一样,当面对一样的问题时,做出的回答也会有所差异。那么如何让研发人员输出的代码符合公司的要求呢?答案就是进行培训,由入职导师对研发人员进行代码规范,以及其他需要遵循规则的培训,让他们直接把这些规则记住,这样子他们在做项目开发的时候,就可以直接输出符合规范的产物了。这里的培训类似于大模型的Fine-Tuning,经过Fine-Tuning这个二次训练,大模型更加清楚的知道我们对它输出内容的要求,也就可以输出更加让我们满意的回答了。

把Promp、Token、Emdedding、Fine-Tuning这些大模型词汇串起来,看看用到这些技术的大模型就可以实现下图所示的应用场景。 在下图这个例子中,我们要把一个设备使用手册做成支持大模型问答的应用,这样当我们在使用产品过程中有疑问时,就不需要自己去翻厚厚的说明书了,而是可以直接向大模型提问。

image

问题来了:

如何让大模型学会这本厚厚的说明书,然后来回答我们的问题呢?

首先我们可以通过Emdedding将这本说明书的文本内容向量化为一个数据库,当用户提问的时候,就可以通过提问的内容在这个数据库中检索出相关的内容,然后跟用户的提问一起组合成完整的Prompt给到我们的语言大模型去处理。根据前面文档的讲解,我们也知道提交给大模型的Prompt内容越多,消耗的token也就越多。而刚才把说明书的内容向量化,并支持相关性线索并提取出来作为problem的过程就是Emdedding。当我们把用户跟这个设备相关的问题提交给大模型时,大模型已经可以给出对应的答案了。

image

但假如在使用的过程中,我们希望大模型给出的回答可以更加贴合设备问题排查的格式,这时候我们就可以使用微调的技术,通过一些优质的问答数据对大模型进行训练微调,使他的回答更加符合我们的期望。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>好的,用户现在问的是如何使用DeepSeek和自己的数据库做二次开发。首先,我需要理解用户的需求。DeepSeek可能是一个大语言模型,类似于LLaMA或GPT,用户想要结合自己的数据库进行二次开发,可能是想定制模型,使其能够访问特定的数据,或者在企业内部应用中使用。 首先,回顾之前的对话历史,用户之前询问了关于GPU选择的详细建议,现在转向了模型的应用开发,可能是在确定硬件配置后,想开始实际的项目开发。用户可能是开发者或者技术团队的成员,需要将模型与自有数据结合,可能用于企业内部的问答系统、数据分析或其他业务场景。 接下来,我需要考虑用户可能的深层需求。用户提到“二次开发”,可能意味着他们希望定制模型,而不仅仅是使用预训练模型。结合自己的数据库,可能需要模型能够访问和利用这些数据,比如进行RAG(检索增强生成)、微调模型以适应特定领域,或者构建一个端到端的应用系统。 需要分步骤回答这个问题。首先,可能需要介绍整体流程,比如数据准备、模型选择、微调、RAG集成、部署等。然后,每个步骤详细说明,给出具体的工具和方法,比如使用Hugging Face的Transformers库,或者DeepSeek的API。还要考虑用户可能遇到的挑战,比如数据隐私、计算资源限制,以及如何优化模型性能。 此外,用户可能需要代码示例或工具推荐,比如如何连接数据库,如何处理数据,如何配置模型参数。需要确保建议的实用性和可操作性,尤其是针对不同规模的企业,可能从个人开发者到企业级应用都有不同的解决方案。 还需要注意DeepSeek的具体情况,比如它是否提供API,是否有开源版本,支持的微调方法,以及如何处理数据隐私问题。如果用户使用的是本地部署的DeepSeek模型,可能需要考虑模型的大小和所需的硬件资源,是否与之前建议的GPU配置匹配。 可能还需要提到评估和优化,比如如何测试模型在二次开发后的性能,如何进行A/B测试,以及如何监控和维护系统。同时,提醒用户注意法律和合规问题,尤其是在处理敏感数据时。 最后,总结关键点,确保用户有一个清晰的路线图,从数据准备到部署,每个步骤都有明确的指导。可能还需要提供进一步的帮助选项,比如具体的技术细节或案例,根据用户的具体需求进行深入解答。</think>以下是结合DeepSeek大模型与自有数据库进行二次开发的完整技术方案,涵盖从数据准备到部署落地的全流程: --- ### **一、核心开发流程** ```mermaid graph TD A[数据准备] --> B[模型选择] B --> C[微调训练] C --> D[RAG增强] D --> E[API部署] E --> F[业务集成] ``` --- ### **二、关键步骤详解** #### **1. 数据准备与清洗** - **数据库接入**: ```python # 示例:从SQL数据库加载数据 import pandas as pd from sqlalchemy import create_engine engine = create_engine('postgresql://user:pass@localhost/dbname') query = "SELECT id, content FROM knowledge_base WHERE category='tech'" df = pd.read_sql(query, engine) ``` - **数据格式化**: - 对话数据:转换为`{"instruction":"...", "input":"...", "output":"..."}`格式 - 知识数据:构建`<title, content, embedding>`三元组 #### **2. 模型选型策略** | 模型类型 | 适用场景 | 推荐版本 | |-------------------|----------------------------|-------------------------| | DeepSeek-7B | 通用问答/垂直领域微调 | deepseek-llm-7b-chat | | DeepSeek-MoE-16B | 高推理效率的多任务处理 | deepseek-moe-16b-chat | | DeepSeek-67B | 复杂逻辑推理/专业领域分析 | deepseek-67b-base | #### **3. 微调训练方案** - **LoRA高效微调**: ```python from peft import LoraConfig lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none" ) ``` - **全参数微调**(需多卡): ```bash # 启动分布式训练 torchrun --nproc_per_node=4 finetune.py \ --model_name deepseek-7b \ --batch_size_per_gpu 4 ``` #### **4. RAG增强实现** - **向量数据库构建**: ```python from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh") vector_db = Chroma.from_documents(docs, embeddings, persist_dir="./chroma_db") ``` - **检索增强推理**: ```python def rag_inference(query): docs = vector_db.similarity_search(query, k=3) context = "\n".join([doc.page_content for doc in docs]) prompt = f"基于以下信息:{context}\n\n问题:{query}" return model.generate(prompt) ``` #### **5. 部署与优化** - **API服务封装**: ```python from fastapi import FastAPI app = FastAPI() @app.post("/chat") async def chat_endpoint(request: dict): response = model.generate( request["prompt"], max_length=1024, temperature=0.7 ) return {"response": response} ``` - **性能优化技巧**: - 使用vLLM加速推理:`--tensor_parallel_size 2 --quantization awq` - 开启FlashAttention-2优化 --- ### **三、典型应用场景** #### **1. 企业知识库问答** ```python # 知识检索增强示例 def enterprise_qa(question): # 第一步:从数据库检索 related_knowledge = search_erp_database(question) # 第二步:构造增强prompt prompt_template = """你是一名ERP系统专家,请根据以下信息回答问题: [系统文档] {knowledge} 问题:{question}""" # 第三步:调用微调后的模型 return deepseek_api(prompt_template.format( knowledge=related_knowledge, question=question )) ``` #### **2. 数据库智能查询** ```python # 自然语言转SQL def nl2sql(question): schema = get_db_schema() # 获取数据库schema prompt = f"""将以下问题转换为SQL查询语句: 数据库结构:{schema} 问题:{question} SQL:""" response = model.generate(prompt) return validate_sql(response) # SQL语法校验 ``` #### **3. 私有化数据分析** ```python # 自动化报告生成 def generate_report(metrics): raw_data = fetch_from_dwh(metrics) # 数据仓库查询 insights = model.generate(f"分析以下数据:{raw_data},总结3个关键结论") return format_as_html(insights) ``` --- ### **四、安全与合规建议** 1. **数据脱敏处理**: ```python from presidio_analyzer import AnalyzerEngine analyzer = AnalyzerEngine() results = analyzer.analyze(text=text, language="zh") ``` 2. **访问控制**: - 基于角色的API访问权限(RBAC) - 请求频率限制:`FastAPI-Limiter` 3. **审计日志**: ```python @app.middleware("http") async def log_requests(request, call_next): start_time = time.time() response = await call_next(request) log_db.insert({ "path": request.url.path, "status": response.status_code, "latency": time.time()-start_time }) return response ``` --- ### **五、硬件配置推荐** 根据GPU选择指南(参考前文),典型配置方案: - **开发环境**:RTX 4090 24GB(本地调试7B模型) - **生产环境**: - 中小规模:2×A100 80GB(支持70B模型推理) - 企业级:8×H100 80GB集群(千亿模型训练) --- 如果需要具体场景的代码实现(如与MySQL/Oracle的深度集成),或希望获得某行业(金融/医疗/制造)的定制方案,可进一步说明需求细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值