前言
《2024大模型人才报告》由脉脉高聘人才智库发布,指出大模型领域未现“抢人大战”,整体人才饱和,部分技术岗位紧缺。大模型五虎员工规模均在数百人,技术研发人才占多数。
大模型相关内容热度持续增长,人才集中在一线城市,北京领先。整体人才供大于求,新发岗位平均月薪小幅上涨,招聘高峰在3月,算法工程师等高技术岗位紧缺,云计算人才最紧缺。
互联网大模型岗位需求居首,字节跳动、小红书等企业在大模型人才招聘中表现突出,大模型高薪岗位分布广泛。近3成新发岗位要求硕博学历,远超新经济行业平均水平。大模型从业者多主动加入,受技术和前景吸引,超半数从业者涨薪,但工作强度大。过半企业已使用大模型,万人大厂使用率高。
文心一言、ChatGPT等大模型在职场中使用广泛,超95%职场人使用后工作效率提升,文本生成用途最广,代码生成提效最多,职场人对大模型使用体验评分较高,但推荐意愿不高。行业专家认为,AI原生组织应善用AI解决问题,向大模型学习,持续学习进步。
以下是对报告主要内容的解读和分析:
人才供需:理性抢人
- 大模型创业公司规模有限:大模型领域的创业公司人员规模相对较小,招聘需求有限,与互联网高速发展时期相比,人才争夺更为理性。
- 人才供需比:大模型领域的人才供需比为1.76,整体上供大于求,但某些高技术岗位如云计算、音视频算法、大模型算法等仍处于紧缺状态。
- 薪酬涨幅:大模型行业的薪酬涨幅相对理性,涨薪幅度多在30%-50%,企业更愿意投资于算力而非仅仅用于人才争夺。
企业布局:八方纳才
- 大模型五虎:智谱AI、月之暗面、百川智能、MiniMax和零一万物被认为是中国大模型领域的领头羊。
- 人才集中地:大模型人才主要集中在一线城市,尤其是北京,成为大模型人才的第一城。
- 人才饱和与薪资:大模型整体人才饱和,但平均月薪小幅上涨,显示出市场对人才的持续需求。
从业者说:高薪、高压
- 学历要求:大模型领域的岗位对学历要求较高,近3成新发岗位要求硕博学历。
- 工作动机:大多数从业者是主动加入大模型领域,主要受技术和前景吸引。
- 工作强度:大模型从业者的工作强度较大,超过半数的从业者每周工作时间超过50小时。
职场应用:文本、代码
- 企业使用大模型:超过半数的企业已经布局大模型,其中万人以上企业的使用率达到八成。
- 大模型工具使用频率:近7成职场人已经在工作中的应用大模型,其中每天使用的占比较高。
- 效率提升:超过95%的职场人表示使用大模型工具后工作效率提升,其中文本生成和代码生成是主要应用场景。
行业专家观点
- AI原生组织:报告强调了AI原生组织的概念,即组织和个人能够利用AI技术来增强自身的优势和弥补短板。
- 持续学习和进步:鼓励员工持续学习,参与技术讨论和培训,以适应技术快速发展的环境。
结论
报告指出,大模型领域的人才市场相对理性,企业在招聘时更注重人才的质量和适配性而非数量。同时,大模型技术在职场中的应用越来越广泛,尤其是在提高工作效率方面显示出显著效果。此外,报告也强调了持续学习和适应新技术的重要性,以及AI技术在组织和个人成长中的赋能作用。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓