深入探讨基于大语言模型的数据标注

文章聚焦于先进大语言模型(LLMs)在数据标注中的应用。介绍了基于LLM的数据标注方法,包括手动设计提示、成对反馈对齐等;探讨了评估标注质量的方式;阐述了利用标注进行学习的策略。同时指出了模型模仿误差、幻觉影响、社会影响等挑战及相关限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章地址: https://arxiv.org/pdf/2402.13446

数据标注是将原始数据用相关信息进行标注,对于提高机器学习模型的效果至关重要。然而,这一过程往往需要大量人力和资金支持。先进大语言模型(LLMs)的出现,例如GPT-4,为彻底改变和自动化复杂的数据标注过程提供了前所未有的机会。

尽管现有的调研已经广泛涵盖了LLM的架构、训练和一般应用,但本文独特地专注于它们在数据标注中的具体用途。

本次调研主要贡献于三个核心方面:

• 基于LLM的数据标注

• 评估LLM生成的标注

• 利用LLM生成的标注进行学习

此外,本文还包括了对利用LLM进行数据标注的方法的深入分类、对整合LLM生成的标注的模型的学习策略的全面调查,以及对使用LLM进行数据标注的主要挑战和局限性的详细讨论。本次调研旨在引导研究人员和从业者探索最新LLM在数据标注方面的潜力,促进这一关键领域的未来发展。

为此提供了一份全面的论文list,可访问:

https://github.com/Zhen-Tan-dmml/LLM4Annotation.git

基于LLM的辅助标注工具和软件

LangChain

Stack AI

UBIAI

Prodigy

介绍

在复杂的机器学习和自然语言处理领域中,数据标注凸显出作为一个关键但具有挑战性的步骤,超越了简单的标签本身,涵盖了丰富的辅助预测信息。这个详细的过程通常涉及以下几个方面:

❶ 对原始数据进行分类,使用类别或任务标签进行基本分类;

❷ 添加中间标签以增加上下文深度;

❸ 分配置信度分数以衡量标注的可靠性;

❹ 应用对齐或偏好标签来将输出定制到特定标准或用户需求;

❺ 标注实体关系以了解数据集中实体之间的相互作用;

❻ 标记语义角色以定义实体在句子中扮演的基本角色;

❼ 标记时间序列以捕获事件或动作的顺序;

由于数据的复杂性、主观性和多样性,数据标注对当前的机器学习模型构成了重大挑战,需要领域专业知识和手动标注大型数据集的资源密集型性质。像GPT-4、Gemini和Llama-2等先进的LLM提供了数据标注革新的大好机会。

LLM不仅仅是工具,而且在改善数据标注的效果和精度方面发挥着至关重要的作用。它们自动化标注任务的能力、确保在大量数据上的一致性以及通过微调或提示适应特定领域显著减少了传统标注方法所遇到的挑战,为NLP领域中可实现的新标准树立了一个新的标准。

本调研深入探讨了使用LLM进行数据标注的细微差别,探索了这种转变方法中的方法学、学习策略和相关挑战。通过这种探索,目标是揭示采用LLM作为重新定义机器学习和自然语言处理领域数据标注格局的催化剂背后的动机。

本文探索利用最新的LLM进行数据标注的领域。这项调研主要做出了四项贡献:

• 基于LLM的数据标注:深入研究了新型LLM(如GPT-4和Llama-2)的特定属性(例如语言理解、上下文理解)、能力(例如文本生成、上下文推理)以及微调或提示策略(例如提示工程、领域特定微调),使它们特别适用于标注任务。

• 评估LLM生成的标注:探讨了评估标注质量的各种方法,以及如何从众多选项中选择高质量的标注。

• 评估了标注质量、可靠性以及对下游任务的影响。

• 挑战和伦理考虑:识别并讨论了各种挑战,从技术限制(如抽样偏差)到伦理困境(如社会偏见和更广泛的社会影响)都涉及在内。

本调研主要关注LLM应用的这一被忽视的方面,旨在为有意将LLM用于标注的学者和实践者提供宝贵的指导。请注意,在本调研中,主要关注纯语言模型。

因此,并未考虑最近出现的多模态LLM,例如LLaVA(Liu等,2023b)。下图1展示了本调研的一般结构。并提供了一份利用LLM进行标注的潜在工具列表,并附有解释性示例。

与其他LLM相关调研的差异

尽管现有的LLM调研广泛涵盖了与LLM相关的架构细微差别、训练方法学、知识编辑和评估协议,但它们的主要重点在于模型在特定端任务(如机器翻译、对齐、代码生成和医学)中的能力。

相比之下,本调研通过强调这些强大的下一代LLM在复杂的数据标注领域的应用,使自己与众不同,这是一个关键但尚未充分探索的领域。

符号和初步准备

本节将介绍了本文中使用的重要符号和初步准备。这些符号及其定义可以在下表1中找到。

问题

大语言模型测试数据的制作方法可以分为以下几个步骤: 1. 数据采集:根据你的需求确定要测试的领域或主题,并收集相关的文本数据。可以从互联网上的公开数据集、论文、书籍、新闻等来源获取数据。确保数据的质量和多样性,以便模型能够获得更全面的训练和测试。 2. 数据清洗:对采集到的原始数据进行清洗和预处理。这包括去除重复数据、去除噪声、处理缺失值和异常值等。确保数据的准确性和一致性,以提高模型的训练效果。 3. 数据划分:将清洗后的数据集划分为训练集、验证集和测试集。一般采用70%的数据作为训练集,15%作为验证集,15%作为测试集。训练集用于模型的训练,验证集用于调整模型的超参数,测试集用于评估模型的性能。 4. 数据标注:根据测试需求,对部分测试集进行人工标注标注可以包括问题和答案对、问题类型、问题难度等信息。标注后的数据可用于评估模型在特定任务上的性能。 5. 数据格式转换:将清洗、划分和标注后的数据转换为模型可接受的格式。对于大语言模型,常见的格式包括文本文件(如txt、csv)或特定的数据集格式(如JSON、XML)。 6. 数据扩充(可选):根据需求可以进行数据扩充,以增加模型训练的样本多样性和泛化能力。可以使用技术手段(如数据增强算法)对已有数据进行扩充,也可以采用生成模型(如生成对抗网络)生成新的样本。 7. 数据预处理:根据模型的要求对数据进行进一步的预处理。例如,将文本数据转换为数值向量表示,进行分词、词干提取、去停用词等操作。 8. 数据加载:将预处理后的数据加载到模型中进行训练和测试。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值