文章地址: https://arxiv.org/pdf/2402.13446
数据标注是将原始数据用相关信息进行标注,对于提高机器学习模型的效果至关重要。然而,这一过程往往需要大量人力和资金支持。先进大语言模型(LLMs)的出现,例如GPT-4,为彻底改变和自动化复杂的数据标注过程提供了前所未有的机会。
尽管现有的调研已经广泛涵盖了LLM的架构、训练和一般应用,但本文独特地专注于它们在数据标注中的具体用途。
本次调研主要贡献于三个核心方面:
• 基于LLM的数据标注
• 评估LLM生成的标注
• 利用LLM生成的标注进行学习
此外,本文还包括了对利用LLM进行数据标注的方法的深入分类、对整合LLM生成的标注的模型的学习策略的全面调查,以及对使用LLM进行数据标注的主要挑战和局限性的详细讨论。本次调研旨在引导研究人员和从业者探索最新LLM在数据标注方面的潜力,促进这一关键领域的未来发展。
为此提供了一份全面的论文list,可访问:
https://github.com/Zhen-Tan-dmml/LLM4Annotation.git
基于LLM的辅助标注工具和软件
LangChain
Stack AI
UBIAI
Prodigy
介绍
在复杂的机器学习和自然语言处理领域中,数据标注凸显出作为一个关键但具有挑战性的步骤,超越了简单的标签本身,涵盖了丰富的辅助预测信息。这个详细的过程通常涉及以下几个方面:
❶ 对原始数据进行分类,使用类别或任务标签进行基本分类;
❷ 添加中间标签以增加上下文深度;
❸ 分配置信度分数以衡量标注的可靠性;
❹ 应用对齐或偏好标签来将输出定制到特定标准或用户需求;
❺ 标注实体关系以了解数据集中实体之间的相互作用;
❻ 标记语义角色以定义实体在句子中扮演的基本角色;
❼ 标记时间序列以捕获事件或动作的顺序;
由于数据的复杂性、主观性和多样性,数据标注对当前的机器学习模型构成了重大挑战,需要领域专业知识和手动标注大型数据集的资源密集型性质。像GPT-4、Gemini和Llama-2等先进的LLM提供了数据标注革新的大好机会。
LLM不仅仅是工具,而且在改善数据标注的效果和精度方面发挥着至关重要的作用。它们自动化标注任务的能力、确保在大量数据上的一致性以及通过微调或提示适应特定领域显著减少了传统标注方法所遇到的挑战,为NLP领域中可实现的新标准树立了一个新的标准。
本调研深入探讨了使用LLM进行数据标注的细微差别,探索了这种转变方法中的方法学、学习策略和相关挑战。通过这种探索,目标是揭示采用LLM作为重新定义机器学习和自然语言处理领域数据标注格局的催化剂背后的动机。
本文探索利用最新的LLM进行数据标注的领域。这项调研主要做出了四项贡献:
• 基于LLM的数据标注:深入研究了新型LLM(如GPT-4和Llama-2)的特定属性(例如语言理解、上下文理解)、能力(例如文本生成、上下文推理)以及微调或提示策略(例如提示工程、领域特定微调),使它们特别适用于标注任务。
• 评估LLM生成的标注:探讨了评估标注质量的各种方法,以及如何从众多选项中选择高质量的标注。
• 评估了标注质量、可靠性以及对下游任务的影响。
• 挑战和伦理考虑:识别并讨论了各种挑战,从技术限制(如抽样偏差)到伦理困境(如社会偏见和更广泛的社会影响)都涉及在内。
本调研主要关注LLM应用的这一被忽视的方面,旨在为有意将LLM用于标注的学者和实践者提供宝贵的指导。请注意,在本调研中,主要关注纯语言模型。
因此,并未考虑最近出现的多模态LLM,例如LLaVA(Liu等,2023b)。下图1展示了本调研的一般结构。并提供了一份利用LLM进行标注的潜在工具列表,并附有解释性示例。
与其他LLM相关调研的差异
尽管现有的LLM调研广泛涵盖了与LLM相关的架构细微差别、训练方法学、知识编辑和评估协议,但它们的主要重点在于模型在特定端任务(如机器翻译、对齐、代码生成和医学)中的能力。
相比之下,本调研通过强调这些强大的下一代LLM在复杂的数据标注领域的应用,使自己与众不同,这是一个关键但尚未充分探索的领域。
符号和初步准备
本节将介绍了本文中使用的重要符号和初步准备。这些符号及其定义可以在下表1中找到。