TCGA各种肿瘤数据的20多种不同玩法/挖掘方法

本文介绍了AIPuFu平台如何利用TCGA数据进行多种癌症的多组学分析,包括生存曲线、基因差异表达、甲基化差异等,提供18项免费应用工具,帮助研究人员揭示肿瘤分子机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

肿瘤基因组图谱 (The Cancer Genome Atlas,TCGA) 计划是由美国国家癌症研究院(National Cancer Institute,NCI)和美国国家人类基因组研究所(National Human Genome Research Institute,NHGRI)于2006年联合启动的项目,目前共计研究33种癌症类型。

TCGA利用大规模测序为主的基因组分析技术,从基因组、表观遗传组、转录组、蛋白质组等多个层析解析癌症的分子机制。最终完成一套完整的与所有癌症基因组改变相关的图谱以提高人们对癌症发病分子基础的科学认识及提高我们诊断、治疗和预防癌症的能力。作为目前最大的癌症基因信息的数据库,TCGA蕴藏着难以想象的宝贵信息。

通过整合分析TCGA数据库中33种癌症的基因组、表观遗传组、转录组和蛋白质组等多组学数据,生物和医学研究与应用的利器AIPuFu平台(www.aipufu.com)为广大用户开发了各种相应的免费应用,能帮助用户深度挖掘多种癌症的多组学数据,探究肿瘤发生发展的分子机制(更多精彩请关注微信公众号:AIPuFuBio)。


目前,AIPuFu平台提供的TCGA数据挖掘应用有:

1、《查询各类肿瘤不同性别、年龄、种族、临床分期的生存曲线(TCGA数据)》

地址:http://www.aipufu.com/goods-507.html

2、《查询各种癌症与对照中基因的甲基化差异情况(TCGA数据)》

地址:http://www.aipufu.com/goods-504.html

3、《查询各种癌症与对照中基因的差异表达情况(TCGA数据)》

地址:http://www.aipufu.com/goods-503.html

4、《查询各类肿瘤中两个蛋白的表达水平相关性(CPTAC或TCGA数据)》

地址:

### 获取和处理TCGA癌症肿瘤全切片图像(WSI)数据 #### 数据获取渠道 为了获得TCGA癌症肿瘤的全视野切片图像(WSI),可以访问美国国家生物技术信息中心(NCBI)旗下的基因表达综合数据库(GEO)、癌症基因图谱(TCGA)门户,或者国际知名的开放存取资源平台cBioPortal。此外,专门针对病理图像的数据共享网站The Cancer Imaging Archive (TCIA)[^1]也提供了大量经过整理并可公开使用的影像资料。 #### 下载流程说明 当决定好具体要下载哪个项目下的图片文件之后,通常按照如下方式操作: - 注册账号并通过身份验证; - 浏览至目标项目的详情页面; - 查看可用的数据类型列表找到对应的WSI链接入口; - 阅读并同意使用条款后点击进入下一步骤; - 选择所需的样本ID号或批次编号完成批量勾选动作; - 发起正式请求提交审核等待反馈通知邮件告知审批结果; - 审核通过后即可在线浏览预览图亦或是打包离线下载原始TIFF/JPEG等格式的大尺寸扫描件[^4]; ```python import openslide from pathlib import Path def load_wsi(file_path): """加载单张WSI""" slide = openslide.OpenSlide(str(Path(file_path))) dimensions = slide.level_dimensions[0] thumbnail_size = (dimensions[0]//8, dimensions[1]//8) img = slide.get_thumbnail(thumbnail_size) return img # 加载本地存储的一个示例WSI文件 example_image = load_wsi('path_to_your_downloaded_file.svs') ``` #### 处理技巧分享 对于如此庞大的高分辨率医学成像而言,直接对其进行计算可能会遇到内存不足等问题。因此建议采用分块读取策略来逐步解析整幅画布上的每一个细节特征。Python库`openslide-python`能够很好地支持此类需求,允许开发者指定感兴趣的小窗口范围进而高效地截取出局部视窗内的像素矩阵用于后续建模分析工作。另外值得注意的是,在实际应用场景下往往还需要配合其他工具包比如PIL/Pillow来进行色彩校正、对比度增强等一系列预处理措施以提升最终模型的表现力[^3]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值