单细胞测序数据的降维方法及细胞亚型鉴定聚类方法总结

本文总结了单细胞测序数据的降维方法,包括PCA、t-SNE、UMAP等,以及特征选择策略。同时,介绍了细胞亚型鉴定的聚类方法,如监督和非监督方法,探讨了各类方法的优缺点。对于数据处理和分析,建议选择最新发表且高质量的软件。
摘要由CSDN通过智能技术生成

图1、细胞亚型的鉴定及分析(Stegle et al. NATURE REVIEWS | GENETICS, 2015)


随着单细胞测序技术的发展,每个研究或实验中测定的细胞数量在显著增加。现在很多单细胞研究中,少则产生几百,多则产生几十万的细胞数量,甚至更多。其中,细胞亚型(cell subtype or cell subpopulations)的鉴定是单细胞测序技术一个非常重要的基础应用。但由于单细胞测序数据通常涉及到很多细胞,而每个细胞中的基因数量又可能是几万个,所以,单细胞测序数据是一个高维的复杂数据。


图2、基于单细胞测序数据的细胞亚型鉴定方法总结(Andrews and Hemberg, 2018, Mol. Aspects Med.)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值