【AI理论学习】深入理解Prompt Learning和Prompt Tuning

本文深入探讨了Prompt Learning和Prompt Tuning在AI领域的概念和应用,阐述了它们如何帮助解决数据标注成本高和样本需求的问题。Prompt Learning通过将下游任务转化为与预训练模型目标对齐的填空题,利用预训练模型的内在能力。Prompt Tuning策略包括部分参数微调和视觉提示调整等,以实现更好的模型适应和资源效率。文章还列举了多个预训练语言模型以及在NLP和CV中的Prompt学习方法,并介绍了相关研究进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


近年来NLP学术领域发展真是突飞猛进,从 对比学习( contrastive learning)到现在的 提示学习(prompt learning)。自从Self-Attention 和 Transformer出现以来,它们就成为了NLP领域的热点。由于全局注意力机制和并行化的训练策略,基于Transformer的自然语言模型能够方便地编码长距离依赖关系,同时可以在大规模自然语言数据集上进行并行化训练。

众所周知,数据标注数据很大程度上决定了AI算法上限,并且成本非常高,无论是对比学习还是提示学习都着重解决少样本学习而提出,甚至在没有标注数据的情况下,也能让模型表现比较好的效果。而且由于自然语言处理领域任务种类繁多,而且任务之间的差别微小,所以为每个任务单独创建一个大语言模型很不划算。与此同时,在CV中,不同的图像识别任务往往也需要微调整个大模型。

因此,Prompt Learning的提出给这个问题提供了一个很好的方向。本文主要介绍prompt learning的基本思想和目前常用的方法。

背景

(1)基于传统机器学习模型:在以往的机器学习方法中,基本上都是基于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值