深入理解Prompt Learning和Prompt Tuning
近年来NLP学术领域发展真是突飞猛进,从 对比学习(
contrastive learning
)到现在的
提示学习(prompt learning)。自从Self-Attention 和 Transformer出现以来,它们就成为了NLP领域的热点。由于全局注意力机制和并行化的训练策略,基于Transformer的自然语言模型能够方便地编码长距离依赖关系,同时可以在大规模自然语言数据集上进行并行化训练。
众所周知,数据标注数据很大程度上决定了AI算法上限,并且成本非常高,无论是对比学习还是提示学习都着重解决少样本学习而提出,甚至在没有标注数据的情况下,也能让模型表现比较好的效果。而且由于自然语言处理领域任务种类繁多,而且任务之间的差别微小,所以为每个任务单独创建一个大语言模型很不划算。与此同时,在CV中,不同的图像识别任务往往也需要微调整个大模型。
因此,Prompt Learning
的提出给这个问题提供了一个很好的方向。本文主要介绍prompt learning
的基本思想和目前常用的方法。
背景
(1)基于传统机器学习模型:在以往的机器学习方法中,基本上都是基于