语言模型Performer:一种基于Transformer架构的通用注意力框架
Performer是一种用于高效处理自注意力机制(Self-Attention)的神经网络架构。自注意力机制在许多自然语言处理和计算机视觉任务中取得了出色的成绩,但由于其计算复杂度与序列长度的平方成正比,因此在处理长序列时存在问题。为了解决这些问题,Google AI引入了Performer,这是一种 具有线性扩展性的Transformer架构,其注意机制具有线性扩展性。该框架是通过
Fast Attention Via Positive Orthogonal Random Features
(
FAVOR+)算法实现的,该算法提供了可扩展的、低方差和无偏估计,可以表达由随机特征图分解(特别是常规softmax-attention)表示的注意机制。这种映射有助于保持线性的空间和时间复杂度。
Performer的核心思想是采用低秩近似来替代传统的完全连接的自注意力矩阵,从而减少计算复杂度。具体来说,Performer使用了以下几种关键技巧:
- Fas