【AI理论学习】语言模型Performer:一种基于Transformer架构的通用注意力框架

Performer是一种Transformer架构,通过低秩近似和正交随机特征,将自注意力机制的计算复杂度从O(n²)降至O(n),适合处理长序列。该模型使用Fast Attention和Orthogonal Random Features提高效率,同时保持性能,适用于自然语言处理等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Performer是一种用于高效处理自注意力机制(Self-Attention)的神经网络架构。自注意力机制在许多自然语言处理和计算机视觉任务中取得了出色的成绩,但由于其计算复杂度与序列长度的平方成正比,因此在处理长序列时存在问题。为了解决这些问题,Google AI引入了Performer,这是一种 具有线性扩展性的Transformer架构,其注意机制具有线性扩展性。该框架是通过 Fast Attention Via Positive Orthogonal Random FeaturesFAVOR+)算法实现的,该算法提供了可扩展的、低方差和无偏估计,可以表达由随机特征图分解(特别是常规softmax-attention)表示的注意机制。这种映射有助于保持线性的空间和时间复杂度。

Softmax 正交随机特征分解
Performer的核心思想是采用低秩近似来替代传统的完全连接的自注意力矩阵,从而减少计算复杂度。具体来说,Performer使用了以下几种关键技巧:

  1. Fas
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值