深度学习中的五种归一化(BN、LN、IN、GN和SN)方法简介
Never_Jiao
2021-03-03 20:39:34
174
收藏
分类专栏:
DeepLearning
文章标签:
归一化
原文链接:
https://blog.csdn.net/u013289254/article/details/99690730
版权
文章链接
https://blog.csdn.net/u013289254/article/details/99690730
点赞
评论
1
分享
x
海报分享
扫一扫,分享海报
收藏
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
深度
学习
中的
归一化
方法
比较
08-23
归一化
层,目前主要有这几个
方法
,Batch Normalization(2015 年)、Layer Normalization (2016 年)、
In
stance Normalization(2017 年)、Group Normalization(2018 年)、Switc hable Normalization(2018 年)
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
相关推荐
深度
学习
中的
五种
归一化
(
BN
、
LN
、
IN
、
GN
和
SN
)
方法
简介
修行之路
08-17
2万+
一. 本文的内容包括: 1.Batch Normalization,其论文:https://arxiv.org/pdf/1502.03167.pdf 2.Layer Normalizaiton,其论文:https://arxiv.org/pdf/1607.06450v1.pdf 3.
In
stance Normalization,其论文:https://arxiv...
深度
学习
中的
归一化
方法
总结(
BN
、
LN
、
IN
、
GN
)
buchidanhuang的博客
08-16
4483
一般在神经网络中会用到数据的
归一化
,比如在卷积层后进行
归一化
然后再下采样然后再激活等。目前比较受欢迎的数据
归一化
层有:
BN
(BatchNormalization),
LN
(LayerNormalization),
IN
(
In
stanceNormalization),
GN
(GroupNormalization)这4种。本篇文章主要是对比一下它们各自是怎么计算的。 先看对数据的
归一化
是这么操作的。...
深度
学习
的五种
归一化
方法
(
BN
,
LN
,
IN
,
GN
和
SN
)
zihao_c的博客
10-22
333
本篇文章参考https://blog.csdn.net/u013289254/article/details/99690730?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMach
in
eLearnPai2-1.add_param_isCf&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMach
in
eLearn
Knowledge Po
in
t (KP):
BN
,
LN
,
IN
,
GN
和
SN
的异同
独行穿落叶,闲坐数流萤
04-18
950
本文首先讲解
BN
[1],
LN
[2],
IN
[3],
GN
[4]和
SN
[5]的异同,其次讲解
BN
为何有效的可能原因[6]。
BN
、
LN
、
IN
、
GN
和
SN
的异同 参考上图:
BN
是在batch上,对N,H,W做
归一化
,对小batchsize效果不好,应优先考虑
LN
在通道方向上,对C,H,W做
归一化
,主要用于RNN
IN
在图像像素上,对H, W做
归一化
,主要用于风格迁移, GAN
GN
将通道分...
(简洁)
深度
学习
中的
五种
归一化
(
BN
、
LN
、
IN
、
GN
和
SN
)
qq_43703185的博客
08-26
310
原文链接:https://blog.csdn.net/u013289254/article/details/99690730 一. 本文的内容包括: 1. Batch Normalization,其论文:https://arxiv.org/pdf/1502.03167.pdf &nbs
BN
、
LN
、
IN
、
GN
的异同
hao1994121的博客
12-21
1万+
从左到右依次是
BN
,
LN
,
IN
,
GN
众所周知,
深度
网络
中的
数据维度一般是[N, C, H, W]或者[N, H, W,C]格式,N是batch size,H/W是feature的高/宽,C是feature的channel,压缩H/W至一个维度,其三维的表示如上图,假设单个方格的长度是1,那么其表示的是[6, 6,*, * ] 上图形象的表示了四种norm的工作方式: ...
神经网络
bn
公式_
BN
、
LN
、
IN
、
GN
、
SN
归一化
weixin_30529023的博客
01-17
23
作者:泛音公众号:知识交点该小伙子文章写得不错,感兴趣的大家可以关注下:公众号:知识交点内容包含:BatchNormalization、LayerNormalization、
In
stanceNorm、GroupNorm、SwitchableNorm1.简述1.1 论文链接(1)、Batch Normalizationhttps://arxiv.org/pdf/1502.03167.pdf...
神经网络的
归一化
(Normalization)
lingdexixixi的博客
03-25
1万+
深度
学习
中的
数据分布偏移:
深度
神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈。虽然神经网络的各层的输入信号分布不同,但最终“指向“的样本标记是不变的,即边缘概率不同而条件概率一致。 为 了降低分布变化的影响,可使用
归一化
策略Normalization,把数据分布映射到一个确定的区间。 神经网络中,常用的...
深度
学习
基础之-2.6标签值
归一化
Susan Wong
05-18
2917
提出问题 在计算Loss时,会达到172.287,337.246这样大的数值,一般Loss都应该小于1. 解决问题 标签值也
归一化
公式如下: (1)ynew=y&m
in
us;ym
in
ymax&m
in
us;ym
in
=y&m
in
us;ym
in
yrangey_{new} = \frac{y-y_{m
in
}}{y_{max}-y_{m
in
}} = \frac{y-y_{m
in
}}{y_{range}} \tag{1}ynew=ymax&m
in
us;...
图解——
深度
学习
中数据
归一化
(
BN
,
LN
,
IN
,
SN
)
m0_46204224的博客
10-08
325
简介
BN
(Batch Normalization)于2015年由 Google 提出,开创了Normalization 先河;2016年出了
LN
(layer normalization)和
IN
(
In
stance Normalization);2018年提出了
GN
(Group normalization)和
SN
(Switchable Normalization)。 独立同分布(i.i.d) 机器
学习
领域有个很重要的假设:IID独立同分布假设,就是假设训练数据和测试数据是满足相同分布,这样才能保证通过训练数
神经网络&DNN算法原理及代码实现(更新中)
weixin_43105057的博客
05-10
3268
本文整理了神经网络及DNN的代码实现,主要参考了吴恩达老师的
深度
学习
课程以及课程作业
MYSQL-ORCALE decode函数在MYSQL
中的
实现
sco的自我修养
12-24
1万+
一、select ifnull(etl(filed(col,...))) ; mysql中实现oracle的decode函数需要用到三个函数: (1)ELT(N,str1,str2,str3,...) 若N = 1,则返回值为 str1 ,若N = 2,则返回值为 str2 ,以此类推。 若N 小于1或大于参数的数目,则返回值为 NULL 。 ELT() 是 FIELD()的补数。
深度
学习
特征
归一化
方法
——
BN
、
LN
、
IN
、
GN
风翼冰舟的博客
08-20
2205
前言 最近看到Group Normalization的论文,主要提到了四个特征
归一化
方法
:Batch Norm、Layer Norm、
In
stance Norm、Group Norm。此外,论文还提到了Local Response Normalization(LRN)、Weight Normalization(WN)、Batch Renormalization(BR)。 国际惯例,参考博客: Gr...
BN
、
LN
、
IN
、
GN
、
SN
归一化
zenRRan的博客
08-14
80
作者:泛音公众号:知识交点该小伙子文章写得不错,感兴趣的大家可以关注下:公众号:知识交点内容包含:BatchNormalization、LayerNormalization、
In
stan...
常用的
归一化
(Normalization)
方法
:
BN
、
LN
、
IN
、
GN
qq_38410428的博客
09-29
2151
常用的Normalization
方法
主要有:Batch Normalization(
BN
,2015年)、Layer Normalization(
LN
,2016年)、
In
stance Normalization(
IN
,2017年)、Group Normalization(
GN
,2018年)。它们都是从激活函数的输入来考虑、做文章的,以不同的方式对激活函数的输入进行 Norm 的。 我们将输入的 fe...
深度
学习
中的
Normalization,
BN
LN
WN等
William Zhao's notes
05-15
4326
收藏两篇相关文章一、详解
深度
学习
中的
Normalization,不只是
BN
转自 https://zhuanlan.zhihu.com/p/33173246
深度
神经网络模型训练之难众所周知,其中一个重要的现象就是
In
ternal Covariate Shift. Batch Norm 大法自 2015 年由Google 提出之后,就成为
深度
学习
必备之神器。自
BN
之后, Layer Norm ...
深度
学习
《各种
归一化
的区别》
qq_29367075的博客
11-23
102
一:各种
归一化
Batch Normalization,其论文:https://arxiv.org/pdf/1502.03167.pdf Layer Normalizaiton,其论文:https://arxiv.org/pdf/1607.06450v1.pdf
In
stance Normalization,其论文:https://arxiv.org/pdf/1607.08022.pdf Group Normalization,其论文:https://arxiv.org/pdf/1803.08494.pd
MySQL 8.0.19安装教程(w
in
dows 64位)
日日言谧
08-15
76万+
话不多说直接开干 目录 1-先去官网下载点击的MySQL的下载 2-配置初始化的my.
in
i文件的文件 3-初始化MySQL 4-安装MySQL服务 + 启动MySQL 服务 5-连接MySQL + 修改密码 先去官网下载点击的MySQL的下载 下载完成后解压 解压完是这个样子 配置初始化的my.
in
i文件的文件 ...
如何在MySQL中创建新的数据库(w
in
dows下)
Beyond_F4的博客
04-11
1万+
一、首先确保已经安装好MySQL,如果还没有安装也没关系,可以参考:https://blog.csdn.net/beyond_f4/article/details/79894234二、w
in
dows下w
in
+R键入cmd进入命令窗口输入mysql -uroot -p,提示输入密码,输入后进入mysql界面三、创建数据库输入create database wltx ;创建数据库(wltx为数据库名)...
©️2020 CSDN
皮肤主题: 大白
设计师:CSDN官方博客
返回首页