海思3519A上运行yolov3(总览)

架构总览

海思3519A芯片的架构:

 

系统设计架构图

因为嵌入式板卡上不能进行编译,只能执行指令和运行编译后的执行文件,所以要采用Linux服务器和3519A板卡的交叉编译方式。

设计流程

华为海思官方推荐的是Windows+Linux+Hi3519A共同编译,分工如下流程:

1.Windows:进行模型的转换和仿真。RuyiStudio

2.Linux:使用交叉编译进行编译。arm-himix200-linux

3.Hi3519A:板卡进行最后的运行。

这里声明下,我这边采用的是Windows和Linux之间通过shell连接,Linux和Hi3519A之间通过nftp文件传输系统进行连接,Hi3519A和Windows之间是通过串口进行连接。

 

准备阶段

1. Hi3519A板卡点亮

 

2. Linux和Windows开发和运行环境搭建

 

开发过程

1. 要将自己的YOLO模型的权重文件与cfg文件转化为caffe的权重与结构文件。此过程中需要安装caffe并修改重新编译使得caffe支持特殊网络层。

                                       https://blog.csdn.net/avideointerfaces/article/details/89111955

2.打开SDK中提供的sample文件,将caffe模型转化为海思可以识别的.wk文件。

                                       https://blog.csdn.net/qq_34533248/article/details/102496209

3.完成wk文件的功能仿真与指令仿真,简单分析仿真代码与修改方法。

                                       https://blog.csdn.net/qq_34533248/article/details/102497297

4.将有关nnie的sample 进行修改并make ,并分析与修改部分代码,传输到开发板进行调试

                                      https://blog.csdn.net/qq_34533248/article/details/102498143

5.将相关sample代码重构并封装成API(施工中...)

6.重构从摄像头读取图像并将推理结果显示出来的sample(未完成)


注意事项:

1. 因为3519A板卡只支持cafffe框架且是v1.0最基础版本,所以需要将yolov3模型转化成.caffemodel格式。

板卡上

2. 华为海思3519A给的SDK里面没有yolov3的Demo例子,这点还需要自己整。

 

相关推荐
<p style="text-align:left;"> <span style="font-size:16px;">本课程内容分为5个部分:</span> </p> <p style="text-align:left;"> <span style="font-size:16px;">1.海思35xx SDK资料梳理以及SVP相关文档详细介绍</span> </p> <p style="text-align:left;"> <span style="font-size:16px;">2.将darknet框架训练出来的yolov3模型转换成caffemodel</span> </p> <div style="text-align:left;"> <span style="font-size:16px;">3.RuyiStudio工具的安装及其使用</span><br /> </div> <div style="text-align:left;"> <span style="font-size:16px;">4.Windows上仿真代码的运行以及代码分析</span><br /> </div> <p style="text-align:left;"> <span style="font-size:16px;">5.开发板上的sample代码的运行以及代码分析</span> </p> <p style="text-align:left;"> <span style="font-size:16px;"><br /> </span> </p> <p style="text-align:left;"> <span style="font-size:16px;"><span style="background-color:#FFFFFF;color:#000000;font-size:16px;">本课程特色:</span></span> </p> <p style="text-align:left;"> <span style="font-size:16px;">1. 不是照本宣科,着力把背后的原理讲清楚。</span> </p> <p style="text-align:left;"> <span style="font-size:16px;">2. 实用性很强。 目标检测算法是计算机视觉基本任务之一,而YOLOv3则仍然是目前工业界中应用非常广泛的算法模型,从速度、准确度以及易用性的trade-off来看,它目前仍然是最好的算法模型之一。</span> </p> <p style="text-align:left;"> <span style="font-size:16px;"><br /> </span> </p>
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页