SEM测试线扫与面扫

在做扫描电子显微镜(SEM)测试时,科学指南针检测平台工作人员在与很多同学沟通中了解到,好多同学对sem测试不太了解,针对此,科学指南针检测平台团队组织相关同事对网上海量知识进行整理,希望可以帮助到科研圈的伙伴们;

 

线扫

 

使电子束沿样品上指定的一条线扫描,就能得到这条线上感兴趣元素含量的变化曲线。线分析是一种定性分析,有二次电子或背散射电子像对照分析,能直观地获得元素在不同相或区域内的分布状态。它常用于材料表面改性(涂层、包覆层、渗C、渗N)、催化剂研究等。做线分析的试样表面,要求抛光,如果试样不平、缺陷、坑洞太多,就会对X-射线造成吸收,使线分布曲线产生大的变化,造成线分布假象,难于分清是元素含量变化或是几何因素引起。定义感兴趣元素的含量要求是“主要”或是“次要”的,如果是“微量”的,所得的线分布曲线变化就不明显,线扫描的可靠性差,这时就要采用点分析(如前面的定点分析示例3)。另外还要注意:分布曲线高度代表元素含量,同种元素在相同条件下可以定性比较含量变化。因为不同元素产生的X射线产额不同,所以不同元素的峰高不能进行元素含量的比较。即使元素含量没有变化,沿扫描线的元素分布通常也不是一条直线,这是由于X射线计数统计涨落和几何因素引起。

 

面扫

 

面扫描是使电子束在试样表面观察区扫描,所定义的感兴趣元素在显示器上以不同颜色的点分别显示出分布图像,并且与采集的二次电子图象相对应,直观明了,点越多、亮度越亮,说明元素含量越高。面分析的灵敏度比点、线分析都低,面扫描需要较长时间收集信号,才能得到比较好的效果,它也是一种定性分析。观察试样表面元素分布时,元素含量高的区域,显示的亮点多、亮度高,但背底噪音也会产生少量亮点,无法和低含量元素区分。因为面扫描灵敏度低,分析时往往采用大的探针电流,特别对轻元素,如果探针电流小,特征X射线信号很弱,无法显示元素分布。做面扫描的试样要求表面光滑。它常用于材料中异物杂质、相分布和元素偏析快速检验。

 

以上仅为科学指南针检测平台对网上资料的收集整合,故此分享给大家,希望可以帮助大家对测试更了解,如有测试需求,可以和科学指南针联系,我们会给与您最准确的数据和最好的服务体验,惟祝科研工作者可以更轻松的工作。

 

免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。

### CDSEM 技术原理 CDSEM 是英文 **Critical Dimension Scanning Electron Microscope** 的缩写,即临界尺寸描电子显微镜。它是一种专门用于测量半导体器件中特征尺寸(如线宽、间距等)的高精度检测设备。CDSEM 基于描电子显微镜(SEM)的技术原理,利用聚焦电子束对样品表进行逐点描,并收集二次电子或背散射电子信号来形成图像[^1]。 #### 工作机制 CDSEM 使用高度聚焦的电子束照射待测样品表,当电子束样品相互作用时会产生二次电子和背散射电子。这些信号经过探测器采集并转换为电信号,最终生成高分辨率的图像。通过对图像中的特征结构进行分析,可以精确计算出目标区域的关键尺寸。由于其极高的空间分辨率,通常可达纳米级别,因此广泛应用于现代半导体制造工艺的质量控制环节。 --- ### CDSEM 应用领域 #### 半导体制造中的缺陷检测质量控制 在半导体芯片制造过程中,CDSEM 被用来监测晶圆上的各种几何特性,例如光刻胶图案化后的线条宽度、沟槽深度以及其他细微结构。这种能力对于确保集成电路性能至关重要,因为任何偏差都可能导致成品率下降甚至失效风险增加。 #### 高级节点制程支持 随着摩尔定律推动下的技术进步,当前最先进的逻辑芯片已经进入5nm乃至更小尺度时代。在此背景下,传统光学测量手段逐渐失去效用,而基于电子束成像方式工作的CDSEMs则成为不可或缺的选择之一。它们不仅具备足够的灵敏度去捕捉亚十纳米级别的细节变化情况,而且还能适应复杂三维架构带来的新挑战——比如FinFET晶体管侧壁轮廓形貌测定等问题。 #### 数据反馈至工艺优化流程 除了单纯执行测试任务外,来自CDSEM系统的量化结果还会被实时传递给上游工序部门作为调整依据;如此一来便形成了闭环控制系统,从而进一步提升了整体生产线效率水平。 ```python # 示例代码展示如何模拟简单的 SEM 描过程 (仅示意用途) import numpy as np def simulate_sem_scan(image_size, beam_width): """ 模拟 SEM 对二维平描过程 参数: image_size (tuple): 图像大小 (height, width),单位像素数 beam_width (float): 电子束直径,相对于单个像素的比例 返回值: scanned_image (numpy.ndarray): 经过描处理后的灰度图像矩阵 """ height, width = image_size grid = np.zeros((height, width)) # 添加随机噪声代表真实世界条件影响因素 noise_level = 0.1 * max(height, width) / beam_width noisy_grid = grid + np.random.normal(scale=noise_level, size=grid.shape) # 进行卷积运算模仿电子束查效果 kernel_radius = int(beam_width // 2) from scipy.ndimage import gaussian_filter smoothed_result = gaussian_filter(noisy_grid.astype(float), sigma=kernel_radius) return smoothed_result.clip(min=0).astype(np.uint8) if __name__ == "__main__": sample_output = simulate_sem_scan((256, 256), beam_width=3.) print(sample_output[:10,:10]) # 输出部分结果供观察 ``` --- ### 测量误差来源及其校准措施 尽管CDSEM拥有卓越表现力,但在实际运用当中仍然不可避免会遇到某些局限性和潜在问题: - **机械振动干扰**: 如果实验环境不够稳定,则可能引起定位漂移现象; - **充电效应**: 特定材质构成的目标物容易积累静电荷,进而扭曲原始形态呈现形式; - **镜头畸变补偿不足**: 当放大倍率极高时,局部失真可能会显著降低绝对准确性。 针对这些问题,《日立电子描电镜操作手册》建议采取一系列预防性维护策略以及定期重新标定程序来最小化负影响^。另外值得注意的是,在工业现场实施大规模部署之前还需要充分考虑成本效益平衡关系。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值