前言
《自然语言处理:大模型理论与实践》(预览版)由赵宇教授编写,是一本深入探讨大语言模型世界的专业著作。
自然语言处理(Natural Language Processing, NLP)作为计算机科学与人工智能领域的关键技术,其核心目标是让计算机能够理解、解释并生成自然语言。在当今的人工智能时代,NLP技术已经深入渗透到我们日常生活的各个方面,从智能助手、语音识别到机器翻译和文本生成,NLP正在以令人瞩目的速度改变着我们的生活方式。
下载当前版本: 完整PDF书籍链接获取,可以扫描下方二维码免费领取👇👇👇

本书主要面向高校本科生、研究生及教学科研人员,适合作为教学用书。同时,它也适合计算语言学家、语言学家、数据科学家和NLP开发人员等专业人士使用。为了照顾不同读者的学科背景差异,书中附录部分专门介绍了与NLP密切相关的基础知识,如概率论、信息论、机器学习与强化学习等。通过本书,读者将能够:
-
系统性地掌握自然语言处理的核心理论与技术;
-
深入了解大语言模型的发展历程与最新进展;
-
掌握大语言模型在实际应用场景中的技巧与优化方法;
-
获得应对自然语言处理复杂挑战的实践经验。
《自然语言处理:大模型理论与实践》(预览版)一书以自然语言处理中语言模型为主线,涵盖了从基础理论到高级应用的全方位内容,逐步引导读者从基础的自然语言处理技术走向大模型的深度学习与实际应用。以下是本书的目录:
第一章 绪论
-
1.1 自然语言处理概述 … 1
-
1.2 自然语言处理简史 … 2
-
1.3 自然语言处理传统研究内容 … 4
-
1.4 自然语言处理与大模型发展现状 … 31
-
1.5 本书内容安排 … 41
-
1.6 讨论 … 42
-
1.7 习题 … 42
第二章 词向量
-
2.1 概述 … 47
-
2.2 文本表示方法 … 48
-
2.3 Word2Vec 模型 … 50
-
2.4 GloVe 模型 … 54
-
2.5 ELMo 模型 … 56
-
2.6 讨论 … 58
-
2.7 习题 … 59
第三章 统计语言模型 … 61
-
3.1 概述 … 61
-
3.2 N-gram 模型 … 62
-
3.3 平滑技术 … 64
-
3.4 讨论 … 67
-
3.5 习题 … 67
第四章 神经语言模型 … 71
-
4.1 概述 … 71
-
4.2 神经概率语言模型 … 71
-
4.3 基于循环神经网络的语言模型 … 75
-
4.4 讨论 … 82
-
4.5 习题 … 82
第五章 预测语言模型 … 85
-
5.1 概述 … 85
-
5.2 Seq2Seq 模型 … 85
-
5.3 注意力机制 … 90
-
5.4 Transformer 模型 … 93
-
5.5 预训练语言模型 … 98
-
5.6 语言模型的使用范式 … 108
-
5.7 讨论 … 114
-
5.8 习题 … 115
第六章 大语言模型架构 … 119
- 6.1 概述 … 119
- 6.2 基于 Transformer 的模型架构 … 119
- 6.3 非 Transformer 的模型架构 … 125
- 6.4 大模型架构配置 … 132
- 6.5 讨论 … 140
- 6.6 习题 … 141
第七章 多模态大模型架构 … 137
-
7.1 概述 … 137
-
7.2 ViT 模型 … 137
-
7.3 CLIP 模型 … 142
-
7.4 BLIP 模型 … 146
-
7.5 BLIP-2 模型 … 152
-
7.6 讨论 … 154
-
7.7 习题 … 155
第八章 大模型预训练 … 157
-
8.1 概述 … 157
-
8.2 预训练数据工程 … 157
-
8.3 预训练方法 … 167
-
8.4 讨论 … 173
-
8.5 习题 … 174
第九章 大模型微调 … 175
-
9.1 概述 … 175
-
9.2 指令微调 … 175
-
9.3 对齐微调 … 189
-
9.4 微调算法 … 199
-
9.5 讨论 … 200
-
9.6 习题 … 200
第十章 提示工程 … 203
-
10.1 概述 … 203
-
10.2 提示工程基础 … 204
-
10.3 情境学习 … 212
-
10.4 提示链 … 215
-
10.5 提示工程安全 … 222
-
10.6 讨论 … 225
-
10.7 习题 … 225
第十一章 概现 … 229
-
11.1 概述 … 229
-
11.2 概现现象 … 230
-
11.3 大语言模型中的概现 … 237
-
11.4 缩放法则 … 241
-
11.5 大模型可解释性 … 244
-
11.6 讨论 … 253
-
11.7 习题 … 254
第十二章 大模型评估 … 257
-
12.1 概述 … 257
-
12.2 评估方式 … 257
-
12.3 评估任务 … 262
-
12.4 评估指标 … 270
-
12.5 讨论 … 280
-
12.6 习题 … 280
第十三章 探讨 … 283
- 13.1 概述 … 283
- 13.2 基于大模型的智能体和具身智能 … 284
- 13.3 大模型在新领域的应用 … 286
- 13.4 大模型的挑战与局限 … 296
- 13.5 大模型的社会影响 … 302
- 13.6 讨论 … 306
- 13.7 习题 … 307
第十四章 大模型实践应用 … 311
-
14.1 概述 … 311
-
14.2 Transformers 编程基础 … 312
-
14.3 大模型微调 … 317
-
14.4 讨论 … 322
-
14.5 习题 … 323
第十五章 基于大模型的应用开发 … 323
-
15.1 概述 … 323
-
15.2 基于 OpenAI 的应用开发 … 325
-
15.3 基于通义千问的应用开发 … 346
-
15.4 基于 LangChain 的应用开发 … 350
-
15.5 讨论 … 360
-
15.6 习题 … 361
下载当前版本: 完整PDF书籍链接获取,可以扫描下方二维码免费领取👇👇👇
