【AI大模型】一文彻底搞懂大模型 - Agent(智能体)

前言

电影《钢铁侠》中的智能助手J.A.R.V.I.S.(Just A Rather Very Intelligent System,即“只是一个相当聪明的系统”)为我们描绘了 一个未来AI Agent的雏形。

J.A.R.V.I.S.,作为托尼·斯塔克(钢铁侠)的得力助手, 不仅拥有强大的数据处理能力,还能精准理解并执行主人的指令,甚至能在关键时刻提供关键建议。

从这位虚拟助手的身影出发,基于LLM的AI Agent,它们正逐步从银幕走进现实,成为我们生活与工作中不可或缺的一部分。

一、LLM Agent

什么是LLM Agent? 大模型Agent是一种构建于大型语言模型(LLM)之上的智能体,它具备环境感知能力、自主理解、决策制定及执行行动的能力。

Agent是能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标。在技术架构上,Agent从面向过程的架构转变为面向目标的架构,旨在通过感知、思考与行动的紧密结合,完成复杂任务。

大模型Agent由规划、记忆、工具与行动四大关键部分组成,分别负责任务拆解与策略评估、信息存储与回忆、环境感知与决策辅助、以及将思维转化为实际行动。

  1. 规划(Planning):
  • 定义:规划是Agent的思维模型,负责拆解复杂任务为可执行的子任务,并评估执行策略。

  • 实现方式:通过大模型提示工程(如ReAct、CoT推理模式)实现,使Agent能够精准拆解任务,分步解决。

  1. 记忆(Memory):
  • 定义:记忆即信息存储与回忆,包括短期记忆和长期记忆。

  • 实现方式:短期记忆用于存储会话上下文,支持多轮对话;长期记忆则存储用户特征、业务数据等,通常通过向量数据库等技术实现快速存取。

  1. 工具(Tools):
  • 定义:工具是Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。

  • 实现方式:通过接入外部工具(如API、插件)扩展Agent的能力,如ChatPDF解析文档、Midjourney文生图等。

  1. 行动(Action):
  • 定义:行动是Agent将规划与记忆转化为具体输出的过程,包括与外部环境的互动或工具调用。

  • 实现方式:Agent根据规划与记忆执行具体行动,如智能客服回复、查询天气预报、AI机器人抓起物体等。

二、LLM Agent + RAG

什么是LLM Agent + RAG RAG技术为LLM Agent提供了额外的知识来源。传统的LLM虽然能够从大规模文本数据中学习到丰富的语言知识和模式,但它们在处理特定领域或需要专业知识的问题时可能表现不足。

通过引入RAG,LLM Agent能够在需要时查询外部知识库,如专业数据库、学术论文、行业报告等,从而增强其知识广度和深度。

如何实现财报分析Agent? 通过集成大型语言模型(LLM)、检索增强生成(RAG)技术、自动化数据处理与分析工具,以及定制化的任务规划与执行流程,构建一个能够自动收集财报数据、进行深度分析并生成报告的智能代理系统。

财报分析Agent

财报分析Agent,自动化完成数据收集、分析与报告生成,具体步骤包括需求分析、架构设计、Prompt设计、数据获取、RAG检索、LLM处理、报告生成等。

  1. 需求分析:
  • 明确财报分析Agent的目标和功能需求,包括支持的财报类型、分析维度、报告格式等。

  • 确定用户群体及其需求,例如财务人员、管理层、投资者等。

  1. 架构设计:
  • 设计Agent的整体架构,包括Prompt设计模块、数据获取模块、RAG检索模块、LLM应用模块、报告生成模块等。

  • 确定各模块之间的接口和交互方式,确保数据流和控制流的顺畅。

  1. Prompt设计模块:
  • 设计合理的Prompt模板,以引导LLM模型更好地理解用户问题和意图。

  • 通过不断优化Prompt设计,提高Agent的回答质量和用户体验。

  1. 数据获取模块:
  • 开发数据获取脚本或接口,负责自动从指定的网站(如证券交易所、公司官网、财经新闻网站等)抓取财报数据和其他相关信息。

  • 对收集到的数据进行清洗、格式化、去重等预处理工作,确保数据质量。

  1. RAG检索模块:
  • 整理历史财报分析报告、行业报告、会计准则等资料,构建财报知识库。

  • 使用RAG技术对知识库进行索引和优化,允许Agent在回答财报分析问题时,能够从其知识库中检索相关的文档和片段。

  1. LLM处理模块:
  • 将LLM模型与RAG技术集成,配置模型参数和检索策略。

  • 利用LLM模型的强大语言理解和生成能力,对经过RAG检索增强的问题进行理解和回答。

  1. 报告生成模块:
  • 设计报告模板和格式化规则,确保生成的报告符合用户需求和规范。

  • 使用自然语言处理技术对报告初稿进行润色、校对和优化,提高报告的可读性和准确性。

  • 集成图表、表格等可视化工具,增强报告的数据呈现效果。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### 大模型智能体Agent开源框架 #### PhidataRig【推荐】 PhidataRig 是一个专注于简化机器学习工作流的工具集,特别适合用于构建基于大模型智能体应用。该框架提供了丰富的功能来处理数据准备、模型训练以及部署等环节[^1]。 ```python from phidata import WorkspaceConfig, DockerResource config = WorkspaceConfig( resources=[ DockerResource(name="my-agent", image="path/to/image"), ] ) if __name__ == "__main__": config.run() ``` 此框架的优势在于其高度集成化的特性,能够有效降低开发者的工作量并提高开发效率。对于希望快速搭建起具备复杂逻辑的大规模AI系统的团队来说是一个不错的选择。 #### LangChain LangChain 提供了一种新颖的方式来链接不同的自然语言处理组件和服务,形成更加灵活多变的应用程序结构。它支持多种主流的语言模型作为后端服务提供商,并允许通过简单的API调用来实现复杂的对话管理任务。 ```json { "chaining": [ {"service": "intent-recognition"}, {"service": "entity-extraction"}, {"service": "response-generation"} ], "model_backend": ["openai-gpt3", "huggingface-transformers"] } ``` 这种设计使得开发者可以轻松组合不同类型的NLP模块,从而创建出满足特定需求的定制化解决方案。特别是在面对需要频繁迭代优化的产品时表现出色。 #### Microsoft Autogen.ai Microsoft 的 Autogen.ai 平台旨在帮助企业级客户更高效地利用自动化技术解决实际业务挑战。平台内置了大量的预训练模型库,涵盖了图像识别、语音合成等多个领域;同时还提供了一系列高级特性和工具链帮助用户更好地管理和维护这些资源。 ```bash pip install autogen-ai autogen init my_project/ cd my_project && autogen train --data ./training_data.csv ``` 借助于强大的社区支持和技术文档体系,即使是初学者也能迅速上手操作,在短时间内完成高质量项目的交付。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值