脉冲扩散模型

论文 Spiking Diffusion Models 主要内容是提出了“脉冲扩散模型(Spiking Diffusion Models, SDMs)”,一种基于脉冲神经网络(SNN)的生成模型,旨在解决传统人工神经网络(ANN)在图像生成领域中的高能耗和计算强度问题。脉冲神经网络因其生物学上的合理性和低能耗特性而受到广泛关注。

对最先进的SNN模型进行比较。FID采用log2尺度,标记的大小对应于IS指标。与其他SNN生成模型相比,我们的模型在使用较少时间步长的情况下表现出更好的FID。

一、引言

本论文提出了一种名为“脉冲扩散模型(Spiking Diffusion Models, SDMs)”的新型生成模型。SDMs结合了脉冲神经网络(Spiking Neural Networks, SNNs)的低能耗特性与扩散模型(Diffusion Models)的强大生成能力,旨在解决传统人工神经网络(Artificial Neural Networks, ANNs)在图像生成任务中面临的高能耗和计算强度问题。脉冲神经网络因其生物学上的合理性和高效的能量利用率,近年来在神经计算领域受到广泛关注。然而,现有的SNN生成模型在图像质量和生成性能方面尚未达到ANN模型的水平。为此,本文提出了两项核心创新,以提升SNN在生成任务中的表现。

二、相关工作

2.1 脉冲神经网络(SNNs)

SNNs模拟生物神经元的脉冲传递机制,通过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值