【图像分类】基于深度学习的杂草类型识别(9种类别,ResNet网络)

该博文介绍了如何使用PyTorch和ResNet深度学习模型进行杂草类型的图像分类,包括数据集介绍、划分、模型训练、测试、损失曲线绘制及预测。项目实现95.7%的平均准确率,覆盖9种澳大利亚常见杂草。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。
(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信我详聊,最好还是订阅,将知识装进自己的脑袋里)

本篇博文,我们将使用PyTorch深度学习框架搭建ResNet实现杂草类型识别,附完整的项目代码和数据集,可以说是全网最详细的手把手教程,初学者可以很好的入门,论文/设计可参考借鉴,其他研究者可以加深ResNet的理解。

先看本项目训练的分类模型的识别效果:

在这里插入图片描述

ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比VGGNet低,效果非常突出。ResNet的结构可以

### 基于深度学习的田间杂草识别系统的实现方法 #### 设计理念与目标 创建一个易于使用的GUI应用程序,旨在利用深度学习模型识别和定位图像中的田间杂草。此应用整合了界面设计、媒体处理以及模型预测功能,形成了一套完整的解决方案[^1]。 #### 系统架构概述 系统主要由三个部分组成:图像输入模块、深度学习模块及图形用户界面(UI)[^3]。其中: - **图像输入模块**负责获取待分析的数据源,支持通过摄像头实时拍摄或上传本地存储的照片; - **深度学习模块**为核心组件之一,选用先进的YOLO系列模型作为基础框架,如YOLOv5或YOLOv10版本,用于执行高效的物体检测任务; - **图形用户界面(UI)**则提供了直观的操作环境给最终使用者查看结果,包括但不限于标注出被发现的目标物的位置及其种类信息。 #### 模型选择与发展历程 对于此类应用场景而言,YOLO家族因其快速准确的特点而成为理想的选择。具体来说,在较新的研究案例中提到过使用YOLOv5完成从数据准备到部署整个流程的成功实践[^2]。与此同时,也有项目尝试采用更新颖的YOLOv10来进行更精确的对象识别工作。 #### 关键技术细节 除了上述提及的内容外,值得注意的是R-CNN类算法同样适用于解决相似的任务需求。这类方法通常涉及以下几个阶段的工作流: - 使用特定策略生成可能含有感兴趣对象的兴趣区; - 应用卷积神经网络(CNNs)提取这些兴趣区内含有的特征向量; - 利用支持向量机(SVMs)或其他分类器判断哪些区域确实对应着我们要找寻的事物,并优化其包围盒坐标以提高精度[^4]。 尽管如此,考虑到效率方面的要求,现代大多数实际产品倾向于优先考虑像YOLO这样的单步法(one-stage detector),因为它们能够在保持良好性能的同时显著减少计算成本。 ```python import torch from torchvision import models, transforms from PIL import Image def load_model(model_name='yolov5'): if model_name == 'yolov5': # 加载预训练好的YOLOv5模型 model = torch.hub.load('ultralytics/yolov5', 'custom', path_or_model='path/to/best.pt') elif model_name == 'rcnn': # 或者加载其他类型的模型比如Faster R-CNN model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model.to(device).eval() return model # 定义转换函数以便正确格式化输入图片 transform = transforms.Compose([ transforms.ToTensor(), ]) img_path = "example.jpg" image = Image.open(img_path) model = load_model() with torch.no_grad(): prediction = model([transform(image)]) print(prediction) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值