《线性代数》第一章第一节“矩阵”笔记

第一章 矩 阵

第一节 矩阵的概念

一、矩阵的概念

  • 定义 1:由 m × n m \times n m×n 个数 a i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) a_{ij} (i = 1, 2, \cdots, m;j = 1, 2, \cdots, n) aij(i=1,2,,m;j=1,2,,n)排成 m m m n n n列的矩形数表

示例:
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} a11a21am1a12a22am2a1na2namn
此数表称做 m m m n n n矩阵,简称== m × n m \times n m×n矩阵==,其中 a i j a_{ij} aij称为矩阵的第 i i i j j j列的元素,记为:
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{align*} A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \end{align*} A= a11a21am1a12a22am2a1na2namn

有时也记为 A = [ a i j ] m × n A = [a_{ij}]_{m \times n} A=[aij]m×n A = [ a i j ] m × n A = [a_{ij}]_{m \times n} A=[aij]m×n A m × n A _{m \times n} Am×n

  • 如果矩阵 A A A的元素 a i j a_{ij} aij全为实数,就称 A A A实矩阵;如果矩阵 A A A有一个元素为负数,就称 A A A复矩阵
  • 线性方程的系数矩阵增广矩阵

线性方程组:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} \begin{aligned} &a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} ,\newline &a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} ,\newline & \quad\quad\quad\quad\quad\cdots\cdots\cdots \newline &a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m},\newline \end{aligned} \end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,⋯⋯⋯am1x1+am2x2++amnxn=bm,
系数方程组 A m × n A_{m \times n} Am×n
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{align*} A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \end{align*} A= a11a21am1a12a22am2a1na2namn
增广矩阵 A m × ( n + 1 ) A_{m \times (n+1)} Am×(n+1)
A = [ a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋱ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ] \begin{align*} A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2n} & b_{2}\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m}\\ \end{bmatrix} \end{align*} A= a11a21am1a12a22am2a1na2namnb1b2bm

  • n n n阶矩阵:当 m = n m = n m=n时, A A A称为 n n n阶方阵,特别地,当 m = n = 1 m = n = 1 m=n=1时, A A A一阶方阵,即 A = [ a ] = a A = [a] = a A=[a]=a
  • 行矩阵:只有一行的矩阵。

A = [ a 1 a 2 ⋯ a n ] \begin{align*} A = \begin{bmatrix} a_{1} & a_{2} & \cdots & a_{n} \end{bmatrix} \end{align*} A=[a1a2an]

也记作:
A = [ a 1 , a 2 , ⋯   , a n ] \begin{align*} A = \begin{bmatrix} a_{1}, & a_{2}, & \cdots, & a_{n} \end{bmatrix} \end{align*} A=[a1,a2,,an]

\quad\quad 列矩阵:只有一列的矩阵。
B = [ b 1 b 2 ⋮ b n ] \begin{align*} B = \begin{bmatrix} b_{1}\newline b_{2}\newline \vdots\newline b_{n} \end{bmatrix} \end{align*} B= b1b2bn

  • 零矩阵:元素都是零的矩阵,称为 O \mathbf{O} O

  • 同型矩阵:若 A A A B B B的行数与列数都分别相等,称 A A A B B B为同型矩形

\qquad 相等矩阵:如果矩阵 A = [ a i j ] m × n A = [a_{ij}]_{m \times n} A=[aij]m×n B = [ b i j ] m × n B = [b_{ij}]_{m \times n} B=[bij]m×n,并且他们的对应元素相等,即:
a i j = b i j ,   i = 1 ,   2 ,   ⋯   ,   m ;   j = 1 ,   2 ,   ⋯   ,   n , a_{ij} = b_{ij},\ i = 1,\ 2,\ \cdots, \ m;\ j =1,\ 2,\ \cdots,\ n, aij=bij, i=1, 2, , m; j=1, 2, , n,

则称矩阵 A A A与矩阵 B B B相等,记作 A = B A = B A=B.

若两矩阵相等,则两矩阵一定为同型矩阵;反之,不成立。

二、 几种特殊的矩阵

1. 对角矩阵
  • 定义:主对角线上的元素 a 11 ,   a 22 ,   ⋯   ,   a m a_{11},\ a_{22},\ \cdots,\ a_{m} a11, a22, , am不全为零,其余元素都为零的方阵,称为对角矩阵,记作 Λ \varLambda Λ,也记作 Λ = d i a g ( a 11 ,   a 22 ,   ⋯   ,   a n n ) \varLambda = diag(a_{11},\ a_{22},\ \cdots,\ a_{nn}) Λ=diag(a11, a22, , ann),即:

Λ = [ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a m ] \begin{align*} \varLambda = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \newline 0 & a_{22} & \cdots & 0 \newline \vdots & \vdots & \ddots & \vdots \newline 0 & 0 & \cdots & a_{m} \newline \end{bmatrix} \end{align*} Λ= a11000a22000am

  • n n n阶单位矩阵:主对角线上的元素都是1,其余元素都是零的 n n n方阵称为 n n n单位矩阵,记作 E E E E n E_{n} En I I I I n I_{n} In,即

E   /   E n   /   I   /   I n = [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ] \begin{equation*} E \ /\ E_{n}\ /\ I\ /\ I_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \newline 0 & 1 & \cdots & 0 \newline \vdots & \vdots & \ddots & \vdots \newline 0 & 0 & \cdots & 1 \end{bmatrix} \end{equation*} E / En / I / In= 100010001

\qquad n n n阶数量矩阵:当 n n n阶单位矩阵的主对角线上的元素都为 k k k时,称为 n n n阶数量矩阵,记作 k E kE kE,即
E = [ k 0 ⋯ 0 0 k ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ k ] \begin{align*} E = \begin{bmatrix} k & 0 & \cdots & 0 \newline 0 & k & \cdots & 0 \newline \vdots & \vdots & \ddots & \vdots \newline 0 & 0 & \cdots & k \end{bmatrix} \end{align*} E= k000k000k

2. 上(下)三角矩阵
  • 定义:主对角线下(上)方元素全为零的方阵称为==上(下)==三角矩阵,如:

    n n n阶上三角矩阵

[ a 11 a 12 ⋯ a 1 n 0 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ] \begin{equation} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \newline 0 & a_{22} & \cdots & a_{2n} \newline \vdots & \vdots & \ddots & \vdots \newline 0 & 0 & \cdots & a_{nn} \newline \end{bmatrix} \end{equation} a1100a12a220a1na2nann

\qquad n n n阶下三角矩阵
[ a 11 0 ⋯ 0 a 21 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] \begin{equation} \begin{bmatrix} a_{11} & 0 & \cdots & 0 \newline a_{21} & a_{22} & \cdots & 0 \newline \vdots & \vdots & \ddots & \vdots \newline a_{n1} & a_{n2} & \cdots & a_{nn} \newline \end{bmatrix} \end{equation} a11a21an10a22an200ann

3. 对称矩阵与反对称矩阵
  • 对称矩阵:如果 n n n阶矩阵 A = [ a i j ] A = [a_{ij}] A=[aij]的元素满足 a i j = a j i ( i ,   j = 1 ,   2 ,   ⋯   ,   n ) a_{ij} = a_{ji}(i,\ j= 1,\ 2,\ \cdots,\ n) aij=aji(i, j=1, 2, , n),那么称 A A A n n n对称矩阵

  • 反对称矩阵:如果 n n n阶矩阵 A = [ a i j ] A = [a_{ij}] A=[aij]元素满足 a i j = − a j i ( i ,   j = 1 ,   2 ,   ⋯   ,   n ) a_{ij} = - a_{ji}(i,\ j = 1,\ 2,\ \cdots,\ n) aij=aji(i, j=1, 2, , n),则称 A A A反对称矩阵

    \qquad\qquad 反对称矩阵的主对角线的元素全为零

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

略无慕艳意

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值