第一章 矩 阵
第一节 矩阵的概念
一、矩阵的概念
- 定义 1:由 m × n m \times n m×n 个数 a i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) a_{ij} (i = 1, 2, \cdots, m;j = 1, 2, \cdots, n) aij(i=1,2,⋯,m;j=1,2,⋯,n)排成 m m m行 n n n列的矩形数表
示例:
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
]
\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
此数表称做
m
m
m行
n
n
n列矩阵,简称==
m
×
n
m \times n
m×n矩阵==,其中
a
i
j
a_{ij}
aij称为矩阵的第
i
i
i行
j
j
j列的元素,记为:
A
=
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
]
\begin{align*} A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \end{align*}
A=
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
有时也记为 A = [ a i j ] m × n A = [a_{ij}]_{m \times n} A=[aij]m×n或 A = [ a i j ] m × n A = [a_{ij}]_{m \times n} A=[aij]m×n或 A m × n A _{m \times n} Am×n
- 如果矩阵 A A A的元素 a i j a_{ij} aij全为实数,就称 A A A为实矩阵;如果矩阵 A A A有一个元素为负数,就称 A A A为复矩阵。
- 线性方程的系数矩阵和增广矩阵:
线性方程组:
{
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
=
b
1
,
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
=
b
2
,
⋯
⋯
⋯
a
m
1
x
1
+
a
m
2
x
2
+
⋯
+
a
m
n
x
n
=
b
m
,
\begin{cases} \begin{aligned} &a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} ,\newline &a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} ,\newline & \quad\quad\quad\quad\quad\cdots\cdots\cdots \newline &a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m},\newline \end{aligned} \end{cases}
⎩
⎨
⎧a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,⋯⋯⋯am1x1+am2x2+⋯+amnxn=bm,
系数方程组
A
m
×
n
A_{m \times n}
Am×n:
A
=
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
]
\begin{align*} A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \end{align*}
A=
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
增广矩阵
A
m
×
(
n
+
1
)
A_{m \times (n+1)}
Am×(n+1):
A
=
[
a
11
a
12
⋯
a
1
n
b
1
a
21
a
22
⋯
a
2
n
b
2
⋮
⋮
⋱
⋮
⋮
a
m
1
a
m
2
⋯
a
m
n
b
m
]
\begin{align*} A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2n} & b_{2}\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m}\\ \end{bmatrix} \end{align*}
A=
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amnb1b2⋮bm
- n n n阶矩阵:当 m = n m = n m=n时, A A A称为 n n n阶方阵,特别地,当 m = n = 1 m = n = 1 m=n=1时, A A A为一阶方阵,即 A = [ a ] = a A = [a] = a A=[a]=a。
- 行矩阵:只有一行的矩阵。
A = [ a 1 a 2 ⋯ a n ] \begin{align*} A = \begin{bmatrix} a_{1} & a_{2} & \cdots & a_{n} \end{bmatrix} \end{align*} A=[a1a2⋯an]
也记作:
A
=
[
a
1
,
a
2
,
⋯
,
a
n
]
\begin{align*} A = \begin{bmatrix} a_{1}, & a_{2}, & \cdots, & a_{n} \end{bmatrix} \end{align*}
A=[a1,a2,⋯,an]
\quad\quad
列矩阵:只有一列的矩阵。
B
=
[
b
1
b
2
⋮
b
n
]
\begin{align*} B = \begin{bmatrix} b_{1}\newline b_{2}\newline \vdots\newline b_{n} \end{bmatrix} \end{align*}
B=
b1b2⋮bn
-
零矩阵:元素都是零的矩阵,称为 O \mathbf{O} O
-
同型矩阵:若 A A A、 B B B的行数与列数都分别相等,称 A A A与 B B B为同型矩形
\qquad
相等矩阵:如果矩阵
A
=
[
a
i
j
]
m
×
n
A = [a_{ij}]_{m \times n}
A=[aij]m×n,
B
=
[
b
i
j
]
m
×
n
B = [b_{ij}]_{m \times n}
B=[bij]m×n,并且他们的对应元素相等,即:
a
i
j
=
b
i
j
,
i
=
1
,
2
,
⋯
,
m
;
j
=
1
,
2
,
⋯
,
n
,
a_{ij} = b_{ij},\ i = 1,\ 2,\ \cdots, \ m;\ j =1,\ 2,\ \cdots,\ n,
aij=bij, i=1, 2, ⋯, m; j=1, 2, ⋯, n,
则称矩阵 A A A与矩阵 B B B相等,记作 A = B A = B A=B.
若两矩阵相等,则两矩阵一定为同型矩阵;反之,不成立。
二、 几种特殊的矩阵
1. 对角矩阵
- 定义:主对角线上的元素 a 11 , a 22 , ⋯ , a m a_{11},\ a_{22},\ \cdots,\ a_{m} a11, a22, ⋯, am不全为零,其余元素都为零的方阵,称为对角矩阵,记作 Λ \varLambda Λ,也记作 Λ = d i a g ( a 11 , a 22 , ⋯ , a n n ) \varLambda = diag(a_{11},\ a_{22},\ \cdots,\ a_{nn}) Λ=diag(a11, a22, ⋯, ann),即:
Λ = [ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a m ] \begin{align*} \varLambda = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \newline 0 & a_{22} & \cdots & 0 \newline \vdots & \vdots & \ddots & \vdots \newline 0 & 0 & \cdots & a_{m} \newline \end{bmatrix} \end{align*} Λ= a110⋮00a22⋮0⋯⋯⋱⋯00⋮am
- n n n阶单位矩阵:主对角线上的元素都是1,其余元素都是零的 n n n阶方阵称为 n n n阶单位矩阵,记作 E E E或 E n E_{n} En或 I I I或 I n I_{n} In,即
E / E n / I / I n = [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ] \begin{equation*} E \ /\ E_{n}\ /\ I\ /\ I_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \newline 0 & 1 & \cdots & 0 \newline \vdots & \vdots & \ddots & \vdots \newline 0 & 0 & \cdots & 1 \end{bmatrix} \end{equation*} E / En / I / In= 10⋮001⋮0⋯⋯⋱⋯00⋮1
\qquad
n
n
n阶数量矩阵:当
n
n
n阶单位矩阵的主对角线上的元素都为
k
k
k时,称为
n
n
n阶数量矩阵,记作
k
E
kE
kE,即
E
=
[
k
0
⋯
0
0
k
⋯
0
⋮
⋮
⋱
⋮
0
0
⋯
k
]
\begin{align*} E = \begin{bmatrix} k & 0 & \cdots & 0 \newline 0 & k & \cdots & 0 \newline \vdots & \vdots & \ddots & \vdots \newline 0 & 0 & \cdots & k \end{bmatrix} \end{align*}
E=
k0⋮00k⋮0⋯⋯⋱⋯00⋮k
2. 上(下)三角矩阵
-
定义:主对角线下(上)方元素全为零的方阵称为==上(下)==三角矩阵,如:
n n n阶上三角矩阵:
[ a 11 a 12 ⋯ a 1 n 0 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ] \begin{equation} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \newline 0 & a_{22} & \cdots & a_{2n} \newline \vdots & \vdots & \ddots & \vdots \newline 0 & 0 & \cdots & a_{nn} \newline \end{bmatrix} \end{equation} a110⋮0a12a22⋮0⋯⋯⋱⋯a1na2n⋮ann
\qquad
n
n
n阶下三角矩阵:
[
a
11
0
⋯
0
a
21
a
22
⋯
0
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
]
\begin{equation} \begin{bmatrix} a_{11} & 0 & \cdots & 0 \newline a_{21} & a_{22} & \cdots & 0 \newline \vdots & \vdots & \ddots & \vdots \newline a_{n1} & a_{n2} & \cdots & a_{nn} \newline \end{bmatrix} \end{equation}
a11a21⋮an10a22⋮an2⋯⋯⋱⋯00⋮ann
3. 对称矩阵与反对称矩阵
-
对称矩阵:如果 n n n阶矩阵 A = [ a i j ] A = [a_{ij}] A=[aij]的元素满足 a i j = a j i ( i , j = 1 , 2 , ⋯ , n ) a_{ij} = a_{ji}(i,\ j= 1,\ 2,\ \cdots,\ n) aij=aji(i, j=1, 2, ⋯, n),那么称 A A A为 n n n阶对称矩阵
-
反对称矩阵:如果 n n n阶矩阵 A = [ a i j ] A = [a_{ij}] A=[aij]元素满足 a i j = − a j i ( i , j = 1 , 2 , ⋯ , n ) a_{ij} = - a_{ji}(i,\ j = 1,\ 2,\ \cdots,\ n) aij=−aji(i, j=1, 2, ⋯, n),则称 A A A为反对称矩阵。
\qquad\qquad 反对称矩阵的主对角线的元素全为零