Improved fast backtracking alignment approch for strapdown inertial navigation system

He H Y , Xu J N , Li J S , et al. Improved fast backtracking alignment approach for strapdown inertial navigation system[J]. Journal of Chinese Inertial Technology, 2015, 23(2):179-183.

捷联惯导系统改进回溯快速对准方法

海军工程大学、许江宁老师
摘要部分见原文

0、介绍

SINS对准的目的是……。对准分成了两个阶段:……。粗对准是一种解析对准,它的精度不高,因为没有考虑量测误差和其他一些噪声项。然而,粗对准的精度对于误差模型中所需要的小角度近似确实足够的。如今,有两种主要的自对准方法:利用解析粗对准结果的卡尔曼滤波精对准;和罗经对准技术。上述两种方法都存在速度与高精度之间的矛盾。为了解决这个问题,文献[6-9] 提出了一种回溯罗经对准方法,在这些方法中,IMU数据被记录下来用于重复解算,因此缩短了对准时间。然而,罗经对准的粗对准的误差相对较大。因此罗经回路收敛的很慢。所需记录的数据的体积和回溯解算执行时间需要大量的时间才能取得高精度的对准。文献[10-11] 提出了基于优化的对准方法。这些方法被看作是粗对准方法,因为这个过程仅仅时确定了姿态矩阵并没有估计传感器的误差,但是这个过程的优势是它的快速性和保证一个较高的精度。这种方法的另一个优点是三个姿态角同时逐渐收敛。 然而,由于没有考虑到陀螺仪/加速度计偏置的存在,算法中的水平角以及偏航存在缓慢的上升趋势。

本文提出了一种快速回溯对准方法,基于优化的粗对准和回溯罗经对准。优化的粗对准在一小段数据上执行,在这个阶段,三个姿态角快速地收敛到它们的精确值。然后,回溯罗经对准用来得到精确的对准。和传统的对准方法相比,提出的方法科技极大地减少对准时间。和回溯罗经对准相比,提出的方法可以有效地减少执行回溯的次数和所需记录的数据的体积。

Ⅰ、回溯导航算法

Ⅱ、改进的快速回溯对准

罗经对准的粗对准误差相对较大。因此罗经回路缓慢地收敛。所需数据的体积和执行回溯导航的次数需要足够大才能取得较高的精度。为了提高粗对准的快速性和精度,采用了一种优化对准算法,优化对准算法的主要思路……。

Ⅲ、实验结果

Ⅳ、结论

为评估生成模型的改进精确度和召回率指标,首先需要理解生成模型的基本概念。生成模型是一种用于根据给定的输入数据生成新样本的机器学习模型。它可以学习数据的分布,并生成与训练数据相似的新样本。 精确度和召回率是评估模型性能的重要指标。精确度衡量模型生成的样本中正确样本的比例,而召回率衡量模型是否能够完整地生成真实样本的比例。 对于评估生成模型的精确度和召回率,可以考虑以下改进指标: 1. 平均精确度:除了计算总体精确度外,还可以计算每个类别的精确度,并求其平均值。这可以帮助我们了解模型在不同类别上的性能差异,并对结果进行更精细的分析。 2. 样本多样性:在评估生成模型时,除了关注精确度和召回率,还应注意样本生成的多样性。生成模型应该能够生成多样化的样本,而不仅仅是在训练数据上的复制。我们可以使用多样性指标,如样本覆盖率和互信息来衡量生成样本的多样性。 3. 异常检测:生成模型应能够生成稀有或异常样本。因此,我们可以引入一个异常检测指标,例如生成模型中的KL散度,以评估模型对于异常样本的生成能力。 4. 推断速度:对于生成模型的评估,推断速度也是一个重要的指标。快速的推断能力可以提高模型的实时性,使其适用于许多实际应用。 通过引入这些改进指标,我们可以更全面地评估生成模型的性能。这些指标可以提供有关模型的精确度、召回率、样本多样性、异常检测和推断速度等方面的信息,帮助我们更好地了解生成模型的潜力和局限性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值