论文解读:特征空间隐函数实现3D形状重建与补全

49068b7fe47d7deec05896b234e17d9d.png

01

摘要

目前一些研究人员主要是从图像进行三维重建,而在本论文中作者将从各种3D数据作为输入来重建和补全3D形状。它在某些方面存在不足:低和高体素分辨率,稀疏与稠密点云,完整或者非完整。最近基于学习的隐函数已经展示较好的优势,它们能够进行连续重建。然而,从3D数据作为输入存在两个限制:1)输入数据存在的详细信息不能被保留;2)人体关节点重建效果较差。为解决这个问题,作者提出了 隐特征网络(IF-Nets)。该网络能够传递连续输出,能够解决多种拓扑形态,补全缺失或稀疏的输入数据并能够保留较好的属性。该网络还能够保留输入数据中的细节,并且能够重建人体关节点。作者与先前工作的两个最大不同的方面:第一原先研究人员使用单个向量去编码3D形状,而作者则提出使用一个基于学习的3维多尺度张量深度特征来表示,它与嵌入形状的原始欧拉空间对齐;第二代替直接分类x-y-z点坐标,作者在一个连续查询点对从张量提取的深度特征进行分类。作者提出的网络模型能够在全局和局部形状结构来做决策,而不是点坐标,它是任意的欧拉变换。

02

方法

背景:基于学习的隐表面

原先方法的优点和缺点都基本相似,它们都是使用一个隐向量z去编码3D形状。然后,一个连续形状的表示通过一个神经函数:

728d3ebd9e6b8ad85ed9b4dc7fc08e4b.png

给定一个查询点p,以及隐编码z,分类点在表面里面还是外面。所以隐函数的表示决策临界上的点,这里需要一个阈值判断t(在IF-Nets中t=0.5)。

隐特征网络

先前的公式存在两个潜在问题。第一,通过接输入点坐标p,网络可以通过记忆目标形态中的典型点占用,来对形状结构进行推理。这种方法严重损失了重建中的旋转和平移不变性。第二,编码所有形状只用一个向量z,导致丢失了数据中的细节信息以及与原始嵌入形态的3D空间的对齐。作者提出的网络框架如下所示:

4c8d8e8352f43a29eece0d153a20b8ee.png

隐特征网络-形状编码

作者首先对点云做简单的离散化处理,然后对输入3D数据尺度进行下采样,来增加感受野区域和通道,但是降低了分辨率。F下的标识从i-n,对应不同的阶段。在分辨率较低数据上获得大的感受野,能够捕获数据的全局结构。在高分辨率上较获得细节,即局部特征。

ef3c7932043e65d7a73ee5c8f3b42206.png

隐特征网络-形状解码

作者提取特征网格位置p处学习到的深度特征F。这个是一个概率,因为在编码中有与输入数据对齐的3D结构。考虑到特征网格的离散性,作者使用三角差分来查询连续3D点。为了使局部相邻的编码信息到点编码处,甚至在早期有小感受野的网格上,作者在位置p处提取特征并在沿笛卡尔坐标轴距离d的周围点提取特征:

1da471593f37746fd4b23163e31f297e.png

因此,将预测点在表面内和外的公式转化为:

22bf5b6313bd15ca1109180ac11812ed.png

训练方法

作者采用标准的交叉熵损失,其中fw表示解码后的数据,o则表示真值。

9326ce8aadef7e4c9dde3c79caf9b211.png

03

结果

bfbd2372120a36f0e3d0ac4dbfd35f67.png

上图中左边为稀疏体素重建,中间为稠密体素重建,右边为3D单视角点云重建

dc54c1a6122b85fa3797fa5b2a66ea97.png

作者还将本文提出的方法扩展到 体素超分辨,点云补全、单视角人体重建

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值