自动驾驶学习笔记(十八)——Lidar感知

本文介绍了自动驾驶中的关键技术,包括Lidar感知处理流程、运动补偿消除畸变、点云分割的各类算法,以及作者的学习笔记和交流邀请。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#Apollo开发者#

学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往:

 《自动驾驶新人之旅》免费课程—> 传送门

Apollo 社区开发者圆桌会》免费报名—>传送门

文章目录

前言

Lidar感知

运动补偿

点云分割

总结


前言

        见《自动驾驶学习笔记(十三)——感知基础

        见《自动驾驶学习笔记(十四)——感知算法

        见《自动驾驶学习笔记(十五)——交通灯识别

        见《自动驾驶学习笔记(十六)——目标跟踪

        见《自动驾驶学习笔记(十七)——视觉感知

Lidar感知

        Lidar点云的处理流程如下:

运动补偿

        激光雷达自身的光束交替和角度旋转,以及探测物体的运动,都会对每帧点云产生的畸变,示例如下:

        上述畸变需要通过运动补偿进行矫正,示例如下:

点云分割

        Lidar点云分割一般的算法类型有如下四大类:

        Semantic Segmentation:基于Point的PointNet系列、基于Grid的FCPN和LatticeNet、基于Range的RangeNet++和SqueezeSeg等。

        Instance Segmentation:基于Detection的LiDARSeg、基于Clustering的SGPN等。

        Panoptic Segmentation:Panoptic-PolarNet。

        Transformer:PCT(Point Cloud Transformer)。

总结

        以上就是本人在学习自动驾驶时,对所学课程的一些梳理和总结。后续还会分享另更多自动驾驶相关知识,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

        另外,如果有同在小伙伴,也正在学习或打算学习自动驾驶时,可以和我一同抱团学习,交流技术。


        版权声明,原创文章,转载和引用请注明出处和链接,侵权必究!

        文中部分图片来源自网络,若有侵权,联系立删。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Cssust

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值