雷达中和计算机视觉中的目标识别检测及跟踪区别在哪里?

作者 | 梦里寻梦、苦瓜  编辑 | 汽车人

原文链接:https://www.zhihu.com/question/58615878/answer/2100196576

https://www.zhihu.com/question/58615878/answer/252820184

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【目标跟踪】技术交流群

后台回复【目标跟踪综述】获取单目标、多目标、基于学习方法的领域综述!

@梦里寻梦

首先,输入数据处理不一样。视觉输入就是输入,你就是在视野里找目标。而雷达特么给你的数据一堆是假的,一堆!!!假的!!!各种假目标,而且几乎没有手段区分出到底啥是假目标,有时候更过分,反射强度等指标比真的还真。雷达的数据,如果没有在天线设计等源头进一步做好,对付复杂场景,有心无力。

比如你在道路上走着,旁边走过一辆大卡车,我的天,怎么咱车的正前方也出现一堆鬼影,让人防不胜防···········

除此之外,雷达对单个目标每次的特征也经常差异较大,更多表现在数目上,一辆车有时候一两个点,有时候七八个点,这都是常有的事。

还有,很多厂家鼓吹雷达全天候不受天气影响,也是有点痴人说梦。来个大暴雨,瞬间痴狂。

有时候路边多点花花草草,来几个井盖,也能让你怀疑人生。不要说雷达4D成像,这特么经常有上天入地的障碍物,你告诉我要信你几分。

第二,常用算法各显神通。同样是特征抽取,视觉主要通过深度学习,常用诸如SSD、YOLO等,而雷达数据就基于比较传统的方法,比如异常值过滤,聚类,霍夫变换等等。

第三,跟踪所应对问题不一样。视觉的跟踪,比方用卡尔曼,可能你更多的是要来调整卡尔曼参数,来更好适配当前场景。雷达的跟踪,除了要调整参数外,还得面临自身状态问题,比如你用框来表示一个雷达目标,那能整死你,因为前方一辆车忽大忽小,行踪难觅。如果用一个点来表示一个目标,那诸如速度等方面时不时差异也较大。另外,雷达的多普勒对于正前方相对较准,但是对于旁边的突发事物,有点爱莫能助。

综上,我觉得雷达目标检测较大的难点主要在于预处理,是要全局里找特征。而视觉主要难点在于预处理后的特征寻找,可以局部里找对象。

业界内,无论是雷达还是视觉都已经做到一定程度,只能说,干净的场景应该都没问题,你不去做融合都没问题。一旦场景复杂,那两者都存在很大困难,融合只能一定程度减少误检漏检。

自动驾驶道路还很漫长!!!

@苦瓜

我主要是做雷达方面的,最近看了部分计算机视觉方面的。一。对于目标识别检测方面来说,雷达和计算机视觉的区别比较大,但本质上都是提取目标的特征。1.目标的特征方面的区别:计算机视觉也就是图像的特征就会丰富一点,有色彩信息还可以有一些模板进行学习;而雷达的目标检测都是对回波强度的检测,分辨率低的得到的是点目标,分辨率高的会得到图像,但是可用的信息都只是电磁波的回波强度。2. 目的的区别:计算机视觉是要识别出物体的图像,甚至是物体是什么;而雷达目标识别检测主要是为了检测出有目标。3.难点不一样:看起来雷达的目的要简单的多,但是雷达的探测距离远(高频雷达可以超视距探测),并且可以在恶劣环境下进行,收到的回波是大量的噪声,杂波和目标回波,而目标的回波能量往往要比噪声和杂波低的多,因此雷达的难点是在高杂波背景下检测目标;而计算机视觉的目标识别的难点是获得有效的目标特征。

二、对于目标跟踪方面:跟踪的理论不论是在哪个领域都是类似的,大致的框架都是一致的,通过观测信息来更新目标状态信息,不断的逼近真实的目标状态,输入—目标初始化—特征提取—目标模型—目标搜索—输出

因此,两者的区别都是由于目标的特征不同引起的。

视频课程来了!

自动驾驶之心为大家汇集了毫米波雷达视觉融合、高精地图、BEV感知、传感器标定、自动驾驶协同感知、语义分割、自动驾驶仿真、L4感知等多个方向学习视频,欢迎大家自取(扫码进入学习)

84275894adb4ccb70ce195ae128e088b.png

(扫码学习最新视频)

国内首个自动驾驶学习社区

近1000人的交流社区,和20+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

4f44187ee26c15a69f9ac6c18df98b1d.jpeg

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向;

eb9e0a1060896b6291f7003ade7a7751.jpeg

添加汽车人助理微信邀请入群

备注:学校/公司+方向+昵称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值