作者 | 無印燁 编辑 | 汽车人
原文链接:https://zhuanlan.zhihu.com/p/656399342
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【规划控制】技术交流群
本文只做学术分享,如有侵权,联系删文
Apollo速度规划分为:DP(动态规划)+ QP(轨迹优化)两部分。
DP给出一个粗解,为了开辟一个凸空间,然后再由osqp/ipopt来做优化平滑。
1. ST坐标系中的S:
路径规划中的SL坐标系:S是参考线上的s;
速度规划中的ST坐标系:S是路径规划输出的路径上的s;
2. 基于动态规划的速度规划
task:SPEED_HEURISTIC_OPTIMIZER
Apollo自动驾驶planning纵向速度规划之DP详解 - 知乎 (zhihu.com)
Planning 基于动态规划的速度规划 - 知乎 (zhihu.com)
基于处理好的ST图,通过采样构建一个二维的cost_table,并对每一格计算cost值,从而通过动态规划算法,得到一条粗的最优ST轨迹。
一般动态规划问题包括以下几个步骤:
确定状态变量
设计状态转移方程
初始化边界
返回结果
状态变量
状态变量的定义就是StGraphPoint, 从代码的定义我们可以看到,每个状态点保存了:
当前栅格的位置信息point_,
优化后的速度(optimal_speed_),
参考速度cost (reference_cost_),
障碍物cost(obstacle_cost_),
空间距离cost (spatial_potential_cost_),
当前点总的cost(total_cost_)
状态转移方程
总体状态转移方程如下:

其中k表示了在最大加减速度约束下,从i时间j位置向i+1时间转移可达范围内的所有点

遍历从(0,0)点开始,向(1,k)逐步遍历。对于遍历点C(i+1,j+k)会比较其本身cost和从C(i,j)转移到C(i+1,j+k)的cost中最小cost作为其新的cost。
3. 基于osqp的二次速度规划
task:PIECEWISE_JERK_SPEED_OPTIMIZER
apollo PiecewiseJerkSpeedProblem 速度优化 QP 数学推导 - 知乎 (zhihu.com)
Planning 基于二次规划的速度规划 - 知乎 (zhihu.com)
优化变量

目标函数

第4项的 :根据决策制定的速度分配确定的 i 时刻的曲率确定的权重;是曲率关于时间t的函数

但是这里如果曲线优化后,在对应时间的s就不是参考位置的s了,曲率的惩罚也不是优化后对应位置的曲率,所以apollo还提供了一直非线性规划方法。
4. 基于ipopt的非线性速度规划
task:PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER
osqp二次规划存在的问题

二次规划的曲率规划的惩罚pi是曲率关于时间t的函数,但实际上路径的曲率是和s相关的。
二次规划的速度规划通过对动态规划粗糙的st曲线,将关于s的区域惩罚转化为关于t的区域的惩罚,此时如果平滑后的曲线和原来动态规划的st曲线相差不大的时候,其惩罚位置是正确的,如果平滑后的曲线和原始的动态规划的st曲线相差较大,实际的惩罚区间就和设定的不一样。
比如上图中应该惩罚的区间为橙色区间,而二次规划算法实际对于曲率惩罚的区域是在绿色的区域。还有比如地图的限速约束也是和s相关的,所以这样的问题就在于,限速或者曲率的函数是关于s的函数,而s又是待求的量(优化量),就无法对目标函数施加速度约束或者曲率的约束,只能通过动态规划的st曲线进行转化,转化成t的函数再施加约束,但这样就会导致二次规划算法的st曲线的速度约束不精确的问题。
ipopt非线性规划求解

f(x)为代价函数,g(x)为限制条件,f(x)和g(x)都可以为非线性或者是非凸的函数,但必须为二次连续可微(及二阶导数是连续的);
非线性优化器求解主要是考虑路径曲率对速度规划的影响,因为曲率约束是一个非线性的函数。
Planning 基于非线性规划的速度规划 - 知乎 (zhihu.com)
速度点集的osqp优化平滑
道路曲率的osqp优化平滑
道路限速的osqp优化平滑

等间隔的时间采样,s,s一阶导数,s二阶导数,以及s的两组松弛变量,用于避免求解失败

额外加入了横向加速度和松弛变量的优化。
横向加速度和曲率有关,由于曲率是关于s的关系式,这里还要对该曲率进行进一步的平滑 ,因为对于非线性规划求解器,无论是目标函数还是约束都是要求函数能够二阶可导:
曲率之前是怎么来的呢?
上节课讲到了,规划路径是通过分段多项式的二次规划算法求得的,每一段的s和l都是保持的三阶导为定值的一个多项式的曲线关系,它可以保证sl是二阶可导,但是求得s的曲率实际上并不是二阶可导的,所以这里需要对曲率曲线重新做一个拟合,生成s关于曲率二阶可导的一个关系式。这里apollo同样采用分段多项式的方法获得s关于曲率kappa的关系式。首先对s进行采样,然后求解s关于曲率的分段多项式的关系式。


对于速度规划问题,我们如何计算一个初始解:

① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)

② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!