摊牌了,五一课程钜惠启动!面试常问的量产项目与技术方向究竟有哪些?

本文回顾了2024年自动驾驶领域的技术亮点,包括端到端大模型的量产、主要车企在城市无图NOA的竞争,以及毫米波雷达、全栈工程师的重要性。文章还探讨了各种感知、预测、规控技术、工具链和传感器标定的最新发展,以及自动化工具如TensorRT和仿真测试的运用。
摘要由CSDN通过智能技术生成

马上五月了,2024年的开年大戏也唱了三分之一。今天就和大家盘一盘自动驾驶这几个月的技术亮点!雷总宣布端到端大模型在国内的首次量产!城市无图NOA方面,小米、蔚来、华为奋勇争先!Tier1大疆车载更是打出7000元的城市领航智驾方案!而特斯拉FSD V12.3则更是惊艳!国内智驾新一轮技术竞争即将开始~据自动驾驶之心了解,相关车企已经组建了端到端团队并投入研发!

价格是一降再降,技术是一卷再卷,个别公司校招薪资竟高达45*16!可以说,在乘车体验大差不差的情况下,智驾技术将是决定车企生死存亡的关键~不同于五六年前,那时可能精通单个感知领域便能胜任工作,但在当下感知、预测、决策大一统的格局下,全栈工程师将是未来的唯一出路!世界上唯一不变的恰恰就是变化本身!技术变革日新月异,今天就和大家一起聊聊自动驾驶全栈技术到底有哪些?

五一钜惠错过再等半年!全平台课程82折

b6fb1e47b335123aae61084375f6100d.png

感知相关

  • BEV感知:BEV作为当下主流量产方案的基石,统一的特征表达可以直接输出多任务结果,如3D检测、BEV分割、在线高精地图等等;

  • OCC占用栅格:OCC直接建模3D世界空间的占用信息,可以有效处理形状不规则、语义不清晰的目标(如路面垃圾、石子)等,行车/泊车必备;

  • 纯视觉单目3D感知:单目主打性价比,已经广泛应用于各类L2/L3的量产方案上,单目2D/3D/BEV和OCC亦有自己独有的发展趋势;

  • 3D&4D毫米波:毫米波雷达尤其是4D Radar正在攻占L4高地,其测距、测速、测角的能力和特有的感知方案让Radar走出了自己的路;

  • 点云3D目标检测:点云3D检测作为LV融合的基础,技术方向十分丰富且难度更大,当下主要应用于L4及真值系统上;

  • LV融合:融合的目的是为了解决视觉遮挡、单帧不稳定等等问题,毫无疑问LV融合正是当下主流的量产方向;

  • RV融合:毫米波全天候运行的特性使得RV融合能够互补,从整体上提升感知性能;

  • 车道线检测&在线高精地图:车道线检测作为自动驾驶的基础任务,正在逐渐向在线高精地图发展,这个任务可以说是无图NOA的核心;

  • Transformer:ViT席卷CV以来,自动驾驶中的SOTA模型或多或少都有Transformer的身影,可谓独领风骚;

  • 多传感器融合目标跟踪:为了便于下游使用,感知需要获取目标的时序信息,从而将障碍物“串”起来,目前动/静态目标均可使用跟踪稳定输出,这个技术栈涉及单传感器/多传感器,卡尔曼滤波等等;

  • 2D目标检测:2D目标检测在自动驾驶中仍然占据一席之地,如红绿灯检测、路面标志等;

预测&规控

  • 轨迹预测:轨迹预测是连接感知和规控的重要模块,这个方向相对感知而言规模较小,但技术要求却更高,是个小众却十分吃香的领域;

  • 规划控制:规控作为整个自动驾驶最下游的模块,直接决定着自动驾驶的安全性和舒适性,这个领域理论要求高,上限更高;

自动驾驶工具链

  • TensorRT部署:模型离不开实车的部署和优化,这个领域涉及大量的CUDA编程和TensorRT部署,可以说是工程化要求最高的方向;

  • 仿真测试:仿真作为测试链路的核心可以打通整个数据闭环,尤其是结合当下爆火的3DGS三维重建,潜力巨大;

  • C++编程:C++是自动驾驶中最广泛应用、重要性最高的语言,实打实的量产基石,永远绕不开的工具;

传感器标定

  • 多传感器标定:标定参数的准确性直接影响下游感知、定位融合的应用,这个技术方向涉及Lidar/Radar/Camera/IMU等传感器;

  • 相机标定:相机标定作为所有传感器中应用最广泛的,成像模型怎么选?内外参怎么标定?双目&环视&鱼眼如何标定?标定板如何选择都十分值得探索;

自动驾驶最前沿

  • 端到端自动驾驶:端到端自动驾驶是指根据输入直接输出车辆的控制信号,特斯拉已经验证了方案的可行性,国内正在大步追赶,必将是2024年智驾竞争高地;

  • 世界模型:世界模型旨在从更高维度理解自动驾驶,利用大量实景视频生成未来场景,可以用于大规模生成仿真数据,尤其是Corner Case;

  • NeRF与自动驾驶:不同于传统的三维重建方法,NeRF/3D GS速度更快、性能更好,更是能与仿真链路打通,未来数据闭环的一大杀器;

  • 大模型与自动驾驶:大语言模型与自动驾驶的结合也是当下的前沿领域,自动驾驶或将迎来GPT时刻;

回想几年前汽车人入行之初,也只是会一些目标检测的小白,几年积累下来对自动驾驶各个领域都有一些涉猎,看问题的角度不在仅仅局限于领域本身。上下游如何应用?可能遇到什么难点?解决方法可能有哪些?自己看的越多,学的越多,就愈发觉得学无止境!我们一直在致力于培养自动驾驶行业优秀人才,为领域输出优质内容,我们一直在路上!

同时平台也自研了一系列课程,涉及BEV感知、端到端自动驾驶、RV融合、多模态3D检测、多传感器标定、规划控制、轨迹预测、在线地图、NeRF、世界模型、多传感器融合跟踪、CUDA与TensorRT、Occupancy、4D毫米波雷达、仿真教程、C++等方向,欢迎加入学习!直接面向量产的内容、面向求职的项目,五一黄金周,平台课程全部82折优惠,欢迎扫码学习:

五一钜惠错过再等半年!全平台课程82折

18586e8dcaf287631b5bdfb7e9644a06.png

欢迎咨询小助理了解更多!

8c5b8448b00fcd77cfdc5bfa2ccb2e42.jpeg

五一黄金周课程矩阵

ea826b0304ff000d99cbcc7ae6fd287e.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值