点击下方卡片,关注“自动驾驶之心”公众号
戳我-> 领取自动驾驶近15个方向学习路线
编辑 | 自动驾驶之心
万事俱备,只欠“外参”
IMU可以与外部感知传感器(如LiDAR和摄像头)协作,这些传感器提供全局观测。由于微机电系统(MEMS)IMU体积小、成本低,SLAM系统可以增加更多的惯性传感器,以便进行故障检测或测量融合。
大多数视觉-IMU融合系统假设每个惯性传感器与系统主体之间的相对位姿是完全标定的。然而仿真实验表明,如果系统不能保证精确的外参,单一IMU能够提供更好的预积分精度。
目前,现有的MIMU外参标定方法需要获得精确的系统轨迹,这通常通过昂贵的转台或外部传感器(例如Kalibr)来估计。尽管这些算法在特定环境中表现良好,但受环境限制或额外设备限制。同时,在线估计传感器噪声仍然是一个挑战,限制了标定精度和计算效率。
本文介绍一种新的方法[1],通过建立两个非线性最小二乘问题分别估计惯性传感器之间的相对平移和姿态:
基于原始的陀螺仪测量值优化相对姿态。
受虚拟IMU(VIMU)方法[2]的启发,生成噪声较小的角加速度测量值,以提高相对位置标定性能。
值得注意的是,该方法不依赖于真实轨迹或外部传感器,同时将惯性噪声的在线估计视为精度的损害,从而避免过拟合问题。

主要贡献包括:
提出了一种快速的MIMU外参标定方法。我们在数据集、自制传感器板以及集成RealSense T265和D435i的传感器设备上验证了该方法的优越性,与其他方法相比,具有更高的精度、计算效率和鲁棒性。
仿真实验表明,仅融合两台IMU并使用我们的方法进行运动预测,其效果可与融合九台IMU媲美。
给出了VIMU方法的一般形式,并提出了其在流形上的传播。实验结果表明,集成该标定方法和流形上的VIMU传播的VIO系统定位精度更高。
多IMU外参快速标定
状态变量与坐标系
假设使用两个IMU,分别记为A和B,它们在世界坐标系{W}中移动。IMU的坐标系分别记为{I}、{A}、{B},以及虚拟IMU的坐标系{V}。常见的MEMS IMU输出三轴角速度 和三轴线性加速度 ,其中参考坐标系为{I}。
符号 、、 分别表示传感器测量值的实际值、估计值和真实值。符号 表示向量的反对称矩阵。
旋转矩阵 表示从{V}到{A}的旋转。同样地,平移矩阵 表示从{V}到{A}的线性平移。
IMU测量模型
给定IMU的测量模型:其中:
和 是随机游走模型的偏置:
和 是高斯噪声:
是世界坐标系下的重力向量。
问题描述
给出惯性坐标系下两个IMU的角速度和特定力的关系:
假设在时间 内同步了惯性测量值,待估计的变量是 和 ,以完成外参标定过程。
标定解决方案
为了避免欧拉角的万向节锁问题和旋转矩阵的计算复杂性,选择四元数 来表示相对姿态。
定义系统状态:
在优化之前,假设已经知道惯性传感器的内参。不评估陀螺仪的失准,因为它已被纳入相对旋转中。
提出的非线性最小二乘优化问题分为两个步骤:相对姿态和相对平移估计。一方面,姿态标定问题独立于线性加速度。另一方面,由于优化了的姿态参数和角速度,平移标定的问题比使用原始惯性测量值时噪声更少。此外,整体计算时间也有所减少。
首先,定义与姿态相关的非线性最小二乘问题:其中, 是与角速度测量相关的残差:相应的协方差矩阵为:
其次,定义与平移相关的非线性最小二乘问题:其中, 是与惯性测量相关的残差:
由于IMU无法测量角加速度 ,我们可以通过虚拟角速度模型的时间导数来估计它:
相应的协方差矩阵为:
将展示虚拟陀螺仪噪声的协方差小于原始值 和 ,偏置协方差也较小。通过将姿态和平移的估计过程分离,该方法节省了时间,并且需要较短的数据采集时间。IMU噪声没有被估计,因为在没有真实轨迹的情况下,无法对噪声施加适当的限制。因此,本方法可以避免过拟合问题。
虚拟IMU方法在流形上的应用
给出虚拟IMU(VIMU)生成方法的一般形式,并完成了提出的方法在相对平移标定中优于使用原始陀螺仪测量值的证明。为了将VIMU与优化的外参集成到视觉-惯性里程计(VIO)系统中,推导了VIMU在流形上的传播。
虚拟IMU一般模型
在融合两个IMU的情况下,建议选择两个传感器之间的中间位置作为VIMU的参考坐标系,而不是任意选择一个姿态。如果VIMU距离B远多于A,或相反,左零空间矩阵 可能是奇异的。以下是两个IMU的VIMU模型一般形式:
其中,矩阵 和 定义在文献【6】中。 为:
虚拟陀螺仪测量的偏置和噪声为:
因此,对等式13的两边取期望,虚拟陀螺仪测量的噪声协方差 和偏置协方差 分别为:
这证明了虚拟角加速度测量误差更小。因此,提出的方法在相对平移标定中的性能应优于使用原始陀螺仪测量值。同样的推导可适用于其他项。
虚拟IMU在流形上的传播
提出了基于等式13的VIMU在流形上的传播。VIMU的系统状态由姿态、位置、速度和偏置组成:
其中,位姿 属于SE(3)群, 是世界坐标系中的速度。首先将估计的偏置项整合到VIMU测量中:
假设VIMU与摄像头同步,并在离散时间 提供测量值。在时间 和 的关键帧之间,推导了VIMU的预积分模型:
推导了用于更新状态估计的传播方程,基于预积分噪声向量 和VIMU噪声向量 :
从线性化方程(20),我们可以推导出相应的协方差矩阵:
其中, 是VIMU噪声的协方差矩阵。初始条件为 ,而 的初始值为:
详细形式如下:
其中,矩阵 和 定义为:
右雅可比矩阵 为:
尽管在虚拟惯性测量生成和流形传播中引入了一些新项,但增加的计算时间相对较短。一些项可以离线完成,如矩阵 和 ,而其他项(例如 和 )的计算复杂度为 ,其中 为IMU的数量。
实验效果






总结一下
本文介绍了一种多IMU的快速外参标定方法。首先估计相对姿态,然后通过引入VIMU方法提高相对平移精度。验证表明,该方法具有快速、精确、鲁棒的特点,并且不依赖于真实轨迹、外部传感器以及在线噪声估计。给出了VIMU方法的通用形式,并提出了其在流形上的传播。实验结果表明,标定方法能够提高VIO系统的定位精度。
参考
[1] Fast Extrinsic Calibration for Multiple Inertial Measurement Units in Visual-Inertial System
[2] A Lightweight and Accurate Localization Algorithm Using Multiple Inertial Measurement Units
『自动驾驶之心知识星球』欢迎加入交流!重磅,自动驾驶之心科研论文辅导来啦,申博、CCF系列、SCI、EI、毕业论文、比赛辅导等多个方向,欢迎联系我们!
① 全网独家视频课程
端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)
② 国内首个自动驾驶学习社区
国内外最大最专业,近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(端到端自动驾驶、世界模型、仿真闭环、2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】全平台矩阵