CVPR 2025 | 自动驾驶论文总结

作者 | 软硬件协同设计 来源 | 自动驾驶之心

 原文链接:https://zhuanlan.zhihu.com/p/1903225674010976913 

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心『自动驾驶』技术交流群

本文只做学术分享,如有侵权,联系删文

前言

本文总结了CVPR-2025自动驾驶论文,总计50篇论文,可作为科研、开发的参考资料。

1.AD/自动驾驶

SplatAD

题目:SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving

名称:SplatAD:实时激光雷达和相机渲染与3D高斯泼溅自动驾驶

论文:https://arxiv.org/abs/2411.16816

代码:https://github.com/carlinds/splatad

单位:Zenseact(瑞典)、Chalmers(瑞典)

出版:CVPR 2025

OmniDrive

题目:OmniDrive: A Holistic LLM-Agent Framework for Autonomous Driving with 3D Perception, Reasoning and Planning

名称:OmniDrive:具有 3D 感知、推理和规划功能的自动驾驶整体 LLM-Agent 框架

论文:https://arxiv.org/abs/2405.01533

代码:https://github.com/NVlabs/OmniDrive

单位:北理工、NVIDAI、华科

出版:CVPR 2025

CityWalker

题目:CityWalker: Learning Embodied Urban Navigation from Web-Scale Videos

名称:CityWalker:通过网络视频学习具象城市导航

论文:https://arxiv.org/abs/2411.17820

代码:https://github.com/ai4ce/CityWalker

单位:纽约大学

出版:CVPR 2025

CarPlanner

题目:CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving

名称:CarPlanner:用于自动驾驶大规模强化学习的一致性自回归轨迹规划

论文:https://arxiv.org/abs/2502.19908

代码:

单位:浙大、菜鸟网络

出版:CVPR 2025

UniScene

题目:UniScene: Unified Occupancy-centric Driving Scene Generation

名称:UniScene:以占用为中心的统一驾驶场景生成

论文:https://arxiv.org/abs/2412.05435

代码:

单位:上交、东方理工、清华、旷视

出版:CVPR 2025

DepthCrafter

题目:DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos

名称:DepthCrafter:为开放世界视频生成一致的长深度序列

论文:https://arxiv.org/abs/2409.02095

代码:https://github.com/Tencent/DepthCrafter

单位:腾讯AILab、港科大、腾信ARCLab

出版:CVPR 2025

LiMoE

题目:LiMoE: Mixture of LiDAR Representation Learners from Automotive Scenes

名称:LiMoE:汽车场景中的 LiDAR 表征学习器的混合体

论文:https://arxiv.org/abs/2501.04004

代码:https://github.com/Xiangxu-0103/LiMoE

单位:南京大学、国立新加坡、上海AILab

出版:CVPR 2025

MonoTAKD

题目:MonoTAKD: Teaching Assistant Knowledge Distillation for Monocular 3D Object Detection

名称:MonoTAKD:单目 3D 物体检测的教学助理知识蒸馏

论文:https://arxiv.org/abs/2404.04910

代码:https://github.com/hoiliu-0801/MonoTAKD

单位:阳明交通大学、华盛顿大学

出版:CVPR 2025

DiffusionDrive

题目:DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving

名称:DiffusionDrive:端到端自动驾驶的截断扩散模型

论文:https://arxiv.org/abs/2411.15139

代码:https://github.com/hustvl/DiffusionDrive

单位:华科、地平线

出版:CVPR 2025

LLMDet

题目:LLMDet: Learning Strong Open-Vocabulary Object Detectors under the Supervision of Large Language Models

名称:LLMDet:在大型语言模型的监督下学习强大的开放词汇对象检测器

论文:https://arxiv.org/abs/2501.18954

代码:https://github.com/iSEE-Laboratory/LLMDet

单位:

出版:CVPR 2025

LSceneLLM

题目:LSceneLLM: Enhancing Large 3D Scene Understanding Using Adaptive Visual Preferences

名称:LSceneLLM:使用自适应视觉偏好增强对大型 3D 场景的理解

论文:https://arxiv.org/abs/2412.01292

代码:

单位:华南理工、腾信RobXLab、东北大学

出版:CVPR 2025

CDSegNet

题目:An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models

名称:具有单步条件扩散模型的端到端稳健点云语义分割网络

论文:https://arxiv.org/abs/2411.16308

代码:https://github.com/QWTforGithub/CDSegNet

单位:南理工、清华、山东大学、上交

出版:CVPR 2025

V2X-R

题目:V2X-R: Cooperative LiDAR-4D Radar Fusion for 3D Object Detection with Denoising Diffusion

名称:V2X-R:协同 LiDAR-4D 雷达融合,用于去噪扩散的 3D 物体检测

论文:https://arxiv.org/abs/2411.08402

代码:https://github.com/ylwhxht/V2X-R

单位:厦门大学、纵目科技、上交

出版:CVPR 2025

MomAD

题目:Don't Shake the Wheel: Momentum-Aware Planning in End-to-End Autonomous Driving

名称:不要摇晃方向盘:端到端自动驾驶中的动量感知规划

论文:https://arxiv.org/abs/2503.03125

代码:https://github.com/adept-thu/MomAD

单位:北交通、地平线、清华

出版:CVPR 2025

FlexDrive

题目:FlexDrive: Toward Trajectory Flexibility in Driving Scene Reconstruction and Rendering

名称:FlexDrive:实现驾驶场景重建与渲染中的轨迹灵活性

论文:https://arxiv.org/abs/2502.21093

代码:

单位:港中文、中科院自动化所、北航

出版:CVPR 2025

DriveScape

题目:DriveScape: Towards High-Resolution Controllable Multi-View Driving Video Generation

名称:DriveScape:面向高分辨率可控多视图驾驶视频生成

论文:https://arxiv.org/abs/2409.05463

代码:

单位:商汤、东北大学

出版:CVPR 2025

SplatFlow

题目:SplatFlow: Self-Supervised Dynamic Gaussian Splatting in Neural Motion Flow Field for Autonomous Driving

名称:SplatFlow:自动驾驶神经运动流场中的自监督动态高斯散斑

论文:https://arxiv.org/abs/2411.15482

代码:

单位:普渡大学、微软

出版:CVPR 2025

T2SG

题目:T2SG: Traffic Topology Scene Graph for Topology Reasoning in Autonomous Driving

名称:T2SG:用于自动驾驶拓扑推理的交通拓扑场景图

论文:https://arxiv.org/abs/2411.18894

代码:

单位:北京邮电大学

出版:CVPR 2025

GoalFlow

题目:GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving

名称:目标流:基于目标驱动的多模态轨迹生成匹配用于端到端自动驾驶

论文:https://arxiv.org/abs/2503.05689

代码:https://github.com/YvanYin/GoalFlow

单位:中国科学院大学、地平线、南京大学、华科、上海AILab

出版:CVPR 2025

VisionPAD

题目:VisionPAD: A Vision-Centric Pre-training Paradigm for Autonomous Driving

名称:VisionPAD:以视觉为中心的自动驾驶预训练范例

论文:https://arxiv.org/abs/2411.14716

代码:

单位:深圳智能网络院、港中文深圳、港科大、华为NoahsArkLab

出版:CVPR 2025

DiMA

题目:Distilling Multi-modal Large Language Models for Autonomous Driving

名称:为自动驾驶提炼多模态大型语言模型

论文:https://arxiv.org/abs/2501.09757

代码:

单位:约翰斯·霍普金斯大学、高通AI

出版:CVPR 2025

ReconDreamer

题目:ReconDreamer: Crafting World Models for Driving Scene Reconstruction via Online Restoration

名称:ReconDreamer:通过在线恢复构建驾驶场景重建的世界模型

论文:https://arxiv.org/abs/2411.19548

代码:https://github.com/GigaAI-research/ReconDreamer

单位:GigaAI、北大、理想、中科院自动化所

出版:CVPR 2025

StreetCrafter

题目:StreetCrafter: Street View Synthesis with Controllable Video Diffusion Models

名称:StreetCrafter:使用可控视频扩散模型进行街景合成

论文:https://arxiv.org/abs/2412.13188

代码:https://github.com/zju3dv/street_crafter

单位:浙大、理想、康奈尔大学

出版:CVPR 2025

DriveDreamer4D

题目:DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation

名称:DriveDreamer4D:世界模型是 4D 驾驶场景表示的有效数据机器

论文:https://arxiv.org/abs/2410.13571

代码:https://github.com/GigaAI-research/DriveDreamer4D

单位:GigaAI、中科院自动化所、理想、北大、TUM

出版:CVPR 2025

DrivingSphere

题目:DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation

名称:DrivingSphere:为闭环仿真构建高保真 4D 世界

论文:https://arxiv.org/abs/2411.11252

代码:https://yanty123.github.io/DrivingSphere/

单位:澳门大学、理想汽车、北理工

出版:CVPR 2025

UniVAD

题目:UniVAD: A Training-free Unified Model for Few-shot Visual Anomaly Detection

名称:UniVAD:一种无需训练的统一小样本视觉异常检测模型

论文:https://arxiv.org/abs/2412.03342

代码:https://github.com/FantasticGNU/UniVAD

单位:中科院自动化所

出版:CVPR 2025

UniScene

题目:UniScene: Unified Occupancy-centric Driving Scene Generation

名称:UniScene:以占用为中心的统一驾驶场景生成

论文:https://arxiv.org/abs/2412.05435

代码:

单位:上交、东方理工、清华、旷视

出版:CVPR 2025

3.E2E端到端

GoalFlow

题目:GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving

名称:GoalFlow:端到端自动驾驶中多模式轨迹生成的目标驱动流匹配

论文:https://arxiv.org/abs/2503.05689

代码:https://github.com/YvanYin/GoalFlow

单位:

出版:CVPR 2025

Don'tShakeTheWheel

题目:Don't Shake the Wheel: Momentum-Aware Planning in End-to-End Autonomous Driving

名称:不要摇晃方向盘:端到端自动驾驶中的动量感知规划

论文:https://arxiv.org/abs/2503.03125

代码:

单位:北京交通、地平线

出版:CVPR 2025

3.BEV/鸟瞰图

BEVDiffuser

题目:BEVDiffuser: Plug-and-Play Diffusion Model for BEV Denoising with Ground-Truth Guidance

名称:BEVDiffuser:基于地面实况指导的 BEV 去噪即插即用扩散模型

论文:https://arxiv.org/abs/2502.19694

代码:

单位:博世北美、博世AI

出版:CVPR 2025

ForestLPR

题目:ForestLPR: LiDAR Place Recognition in Forests Attentioning Multiple BEV Density Images

名称:ForestLPR:关注多幅 BEV 密度图像的森林中的 LiDAR 位置识别

论文:https://arxiv.org/abs/2503.04475

代码:

单位:上海交大

出版:CVPR 2025

CorrBEV

题目:CorrBEV:Multi-View 3D Object Detection by Correlation Learning with Multi-modal Prototypes

名称:CorrBEV:通过多模态原型的关联学习实现多视图 3D 物体检测

论文:https://cvpr.thecvf.com/virtual/2025/poster/34617

代码:

单位:

出版:CVPR 2025

4.Det/检测

PO3AD

题目:PO3AD: Predicting Point Offsets toward Better 3D Point Cloud Anomaly Detection

名称:PO3AD:预测点偏移以实现更好的 3D 点云异常检测

论文:https://arxiv.org/abs/2412.12617

代码:

单位:

出版:CVPR 2025

SearchDetect

题目:Search and Detect: Training-Free Long Tail Object Detection via Web-Image Retrieval

名称:搜索和检测:通过网络图像检索进行无需训练的长尾对象检测

论文:https://arxiv.org/abs/2409.18733

代码:

单位:

出版:CVPR 2025

MonoTAKD

题目:MonoTAKD: Teaching Assistant Knowledge Distillation for Monocular 3D Object Detection

名称:MonoTAKD:单目 3D 物体检测的教学助理知识提炼

论文:https://arxiv.org/abs/2404.04910

代码:https://github.com/hoiliu-0801/MonoTAKD

单位:

出版:CVPR 2025

5.Lane/车道线

GLane3D

题目:GLane3D : Detecting Lanes with Graph of 3D Keypoints

名称:GLane3D:用3D关键点图检测车道

论文:https://cvpr.thecvf.com/virtual/2025/poster/33089

代码:

单位:

出版:CVPR 2025 Poster

6.Tracking/跟踪

MambaVLT

题目:MambaVLT: Time-Evolving Multimodal State Space Model for Vision-Language Tracking

名称:MambaVLT:用于视觉语言跟踪的时间演化多模态状态空间模型

论文:https://arxiv.org/abs/2411.15459

代码:

单位:哈工大深圳、深圳鹏程Lab

出版:CVPR 2025

MITracker

题目:MITracker: Multi-View Integration for Visual Object Tracking

名称:MITracker:用于视觉对象跟踪的多视图集成

论文:https://arxiv.org/abs/2502.20111

代码:

单位:上海科技大学、上海交大

出版:CVPR 2025

GRAE-3DMOT

题目:GRAE-3DMOT: Geometry Relation-Aware Encoder for Online 3D Multi-Object Tracking

名称:GRAE-3DMOT:用于在线 3D 多目标跟踪的几何关系感知编码器

论文:https://cvpr.thecvf.com/virtual/2025/poster/35168

代码:https://github.com/XuM007/MITracker

单位:

出版:CVPR 2025

7.OCC/占用

OccMamba

题目:OccMamba: Semantic Occupancy Prediction with State Space Models

名称:OccMamba:使用状态空间模型进行语义占用预测

论文:https://arxiv.org/abs/2408.09859

代码:

单位:中国科学技术大学、上海AILab、斯坦福

出版:CVPR 2025

GaussianWorld

题目:GaussianWorld: Gaussian World Model for Streaming 3D Occupancy Prediction

名称:GaussianWorld:用于流式 3D 占用率预测的高斯世界模型

论文:https://arxiv.org/abs/2412.10373

代码:https://github.com/zuosc19/GaussianWorld

单位:清华

出版:CVPR 2025

GaussianFormer-2

题目:GaussianFormer-2: Probabilistic Gaussian Superposition for Efficient 3D Occupancy Prediction

名称:GaussianFormer-2:用于高效3D占用预测的概率高斯叠加

论文:https://arxiv.org/abs/2412.04384

代码:https://github.com/huang-yh/GaussianFormer

单位:清华、鉴智机器人

出版:CVPR 2025

VoxelSplat

题目:VoxelSplat: Dynamic Gaussian Splatting as an Effective Loss for Occupancy and Flow Prediction

名称:VoxelSplat:动态高斯散斑作为占用和流量预测的有效损失

论文:https://cvpr.thecvf.com/virtual/2025/poster/33444

代码:

单位:

出版:CVPR 2025 Poster

8.MAP/地图

InteractionMap

题目:InteractionMap: Improving Online Vectorized HDMap Construction with Interaction

名称:InteractionMap:通过交互改进在线矢量化高清地图构建

论文:https://cvpr.thecvf.com/virtual/2025/poster/34320

代码:

单位:

出版:CVPR 2025

DrivingByTheRules

题目:Driving by the Rules: A Benchmark for Integrating Traffic Sign Regulations into Vectorized HD Map

名称:遵守规则驾驶:将交通标志规则整合到矢量化高清地图中的基准

论文:https://arxiv.org/abs/2410.23780

代码:

单位:西安交大、阿里巴巴

出版:CVPR 2025

9.Fusion/融合

V2X-R

题目:V2X-R: Cooperative LiDAR-4D Radar Fusion for 3D Object Detection with Denoising Diffusion

名称:V2X-R:协同 LiDAR-4D 雷达融合,用于去噪扩散的 3D 物体检测

论文:https://arxiv.org/abs/2411.08402

代码:https://github.com/ylwhxht/V2X-R

单位:厦门大学、上海交大

出版:CVPR 2025

RICCARDO

题目:RICCARDO: Radar Hits Prediction and Convolution for Target Detection with Radar-Camera

名称:RICCARDO:雷达命中预测和卷积,通过雷达-摄像头融合实现目标检测

论文:https://cvpr.thecvf.com/virtual/2025/poster/33054

代码:

单位:

出版:CVPR 2025

11.MTL/多任务

TADFormer

题目:TADFormer : Task-Adaptive Dynamic Transformer for Efficient Multi-Task Learning

名称:TADFormer:用于高效多任务学习的任务自适应动态Transformer

论文:https://arxiv.org/abs/2501.04293

代码:

单位:首尔私立大学

出版:CVPR 2025

10.PnC/规控

SceneTAP

题目:SceneTAP: Scene-Coherent Typographic Adversarial Planner against Vision-Language Models in Real-World Environments

名称:SceneTAP:现实环境中针对视觉语言模型的场景连贯排版对抗规划器

论文:https://arxiv.org/abs/2412.00114

代码:

单位:南洋理工、阿尔伯塔大学、天津大学

出版:CVPR 2025

STVR-SSMP

题目:Spatial-Temporal Visual Representation for Self-Supervised Motion Planning

名称:自监督运动规划的时空视觉表征

论文:https://cvpr.thecvf.com/virtual/2025/poster/32619

代码:

单位:

出版:

DexDiffuser

题目:DexDiffuser: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation

名称:DexDiffuser:用于自适应灵巧操作的交互感知扩散规划

论文:https://www.researchgate.net/publication/386211316_DexDiffuser_Interaction-aware_Diffusion_Planning_for_Adaptive_Dexterous_Manipulation

代码:

单位:

出版:CVPR 2025

12.Calib/标定

AutoCalib

题目:RC-AutoCalib: An End-to-End Radar-Camera Automatic Calibration Network

名称:RC-AutoCalib:端到端雷达摄像头自动校准网络

论文:https://cvpr.thecvf.com/virtual/2025/poster/35011

代码:

单位:

出版:CVPR 2025

总结

自动驾驶之心

论文辅导来啦

知识星球交流社区

近4000人的交流社区,近300+自动驾驶公司与科研结构加入!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(大模型、端到端自动驾驶、世界模型、仿真闭环、3D检测、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎加入。

独家专业课程

端到端自动驾驶大模型、VLA、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频

学习官网:www.zdjszx.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值