线性代数笔记(7) 向量、矩阵的范数

本文详细介绍了向量和矩阵的范数概念,包括正定性、齐次性、三角不等式和乘法不等式等基本性质。重点讨论了向量的p范数以及矩阵的m1和m∞范数,并探讨了向量范数的等价性和矩阵范数与向量范数的相容性。此外,还列举了一些常见的向量和矩阵范数实例,对于理解和应用这些概念提供了深入的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量、矩阵的范数

在向量、矩阵(复数域)上定义一个关于内部各个元素的运算,只要运算满足以下规律就可以成为范数

  1. 正定性:||A|| >= 0,且当且仅当为0向量(0矩阵)时取等号
  2. 齐次性:||kA|| = |k| · ||A|| ,k为一个复数
  3. 三角不等式:||A+B|| <= ||A|| + ||B||

此外对于方阵还有一个相容性(乘法不等式)
4. 相容性:||AB|| <= ||A||·||B||

一些常用的向量、矩阵范数

https://blog.csdn.net/zaishuiyifangxym/article/details/81673491
向量的p范数就是各个元素模的p次方和再求p次方根(p是一个实数)
补充俩矩阵的常用范数 m1 m∞
在这里插入图片描述

向量范数的等价

在这里插入图片描述

矩阵范数和向量范数的相容

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值