控制工程第三次学习笔记

拉普拉斯变换的收敛域(ROC)与逆变换(ILT)

时域内的函数     L[f(t)] = \int_{0 }^{+\infty}f(x)e^{-st}dt           s = \sigma +j\omega 

常系数线性 线性时不变系统  

步骤:1.t变s

2.求解代数方程

3.s变回t   

传递函数

系统输入输出都是卷积,拉普拉斯将卷积变为乘积

配置极点达到输出

研究系统稳定性的时候,会给系统一个单位冲击响应S(t)( 单位为0宽度为1,足够快有力 )

通过分析S(t)就可以分析系统的稳定性

L[S(t)]=1

输出:开环:X(s) = U(s)G(s)

闭环:X(s) = R(s)G(s)

G(s)=\frac{D(s)}{N(s)}

N(s)=0\rightarrow S1=P1;S2=P2    得到极点

D(s)=0\rightarrow S1=Z1;S2=Z2    得到零点 

看发散决定稳定性

极点

落在实轴正

发散

落在实轴负

收敛

落在非轴右侧

边震荡边发散

落在非轴左侧

边震荡边收敛

落在虚轴上

震荡响应

总结:当极点都落坐左边,则为稳定

虚轴

稳定性

优化

控制

系统的瞬态分析

系统的稳态分析

稳定的系统

稳定是一切的基础,在此基础上才能进行其他

系统的稳定:传递函数复平面的极点,       即\frac{dx}{dt}=0

 

 B系统:有界输入--有界输出               例子:平衡车

拉普拉斯变换的应用

微分性质:L[f^{^{n}}(s)] = s^{n}F(s)-s^{n-1}f'(0)-...-f^{n-1}(0)

L[f'(s)] = sF(s)-f(0)

L[f''(s)] = s^{2}F(s)-sf'(0)-...-f(0)

积分性质L[\int_{0}^{t}f(t)dt ]=\frac{1}{s}F(s)

卷积定理L(f1(t)*f2(t))=F(1s)*F2(s)

微分积分方程通过拉普拉斯变换为代数方程

      

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值