常微分方程 知识结构

可分离变量的微分方程

  • 如果一个一阶微分方程可以写成g(y)dy = h(x)dx 的形式,那么称这个方程可以分离变量,用两端分别积分的方法就可以求解函数y(x)

可化为齐次的微分方程

  • \frac{dy}{dx}=\varphi(\frac{y}{x})
  • \frac{dy}{dx}=\frac{ax+by+c}{a_1x+b_1y+c_1}

一阶线性微分方程

\frac{dy}{dx}+P(x)y=Q(x)

  • 方程的通解:

y=Ce^{-\int P(x)dx}+e^{-\int P(x)dx}\int Q(x)e^{\int P(x)dx}dx

伯努利方程

\frac{dy}{dx}+P(x)y=Q(x)y^n(n\neq 0,1)

  • 两端除以y^n
  • 替换新变量 z = y^(1-n)

\frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x)

可降阶的高阶微分方程

  • 反复积分得到方程的解

n阶常系数齐次线性微分方程的通解

  • n=2

\begin{matrix} y''+py'+qy=0\\ r^2+pr+q=0\\ r1,r2 \end{matrix}

两个不相等的实根r_1,r_2y=C_1e^{r_1x}+C_2e^{r_2x}
两个相等的实根r_1=r_2y=(C_1+C_2x)e^{rx}
一对共轭复根r_{1,2}=\alpha + \beta iy=e^{\alpha x}(C_1cos\beta x+C_2sin\beta x)

n阶常系数非齐次线性微分方程的特解

        

y=e^{\lambda x}P_m(x)y^*=x^kR_m(x)e^{\lambda x}
若λ不是齐次方程对应的特征方程的根,k取0
y=e^{\lambda x}\begin{bmatrix} P_n(x)cos(\omega x)+Q_n(x)sin(\omega x) \end{bmatrix}y^*=x^ke^{\lambda x}\begin{bmatrix} R_m ^1 (x)cos\omega x + R_m^2(x)sin\omega x \end{bmatrix}
若λ+ωi或λ-ωi不是对应特征方程的根k=0;若λ是特征方程的s重根,k取s

欧拉方程

  • 形如微分方程

x^ny^{(n)}+p_1x^{n-1}y^{(n-1)}+...+p_{n-1}xy'+p_ny=f(x)

  • 做变换

x^ny^{(n)}=D(D-1)...(D-n+1)y,D=\frac{d}{dt}

初等积分法

        恰当方程

        变量分离方程        

        一阶线性微分方程

        积分因子

        一阶隐式微分方程

        应用举例

解的存在和唯一性

        Picard定理

        Peano定理

        解的延伸

        比较定理

        奇解

        包络

解对初值和参数的依赖性

        n维线性空间中的微分方程

        解对初值和参数的连续依赖性

        解对初值和参数的连续可微性

线性微分方程

        齐次与非齐次线性微分方程

        常系数线性微分方程

        高阶线性微分方程

        周期性线性微分方程

幂级数解法

        Cauchy定理

        幂级数解法

        广义幂级数解

边值问题

        Sturm比较定理

        Sturm-Liouuville边值问题

        特征函数系的正交性

        周期边值问题

一阶偏微分方程

        首次积分

        一阶齐次线性偏微分方程

        一阶拟线性偏微分方程

        

特殊的微分方程

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值