OpenAI发布了其根据自身技术研发与产品开发的通往AGI的五级量表。OpenAI 将 AI 开发分为五个阶段,每个阶段代表更高级的能力水平:
目前OpenAI向多Agent系统迈进与第三阶段的目标一致,其中 AI Agent应代表用户执行操作,从而提高他们的能力和效率。
按照现在AI的发展速度,GUI-Agent将能够快速接管一定的企业流程自动化,加上RAG技术的快速迭代翻新,5年之后差不多能够实现。
当然,还要看大语言模型的发展进程,毕竟LLM Based Agent的重点在于LLM。
一、AI Agent的5个级别
智能体的五个级别非常重要,它们不仅帮助我们理解人工智能的发展阶段和能力水平,还为人工智能的研究、开发和应用提供了一个清晰的框架。以下是智能体五个级别的简要概述及其重要性:
• L0级别(无AI):这个级别的智能体不具备人工智能,仅有具备感知能力的工具加上行动功能。它们仅依赖于基础规则和手动操作,无法展现智能化的行为。这个级别是智能体发展的起点,为后续级别的发展提供了基础。
• L1级别(基于规则的AI):这个级别的智能体采用基于规则的人工智能系统。它们能够根据预设的规则来执行任务,但缺乏自我学习和适应新情况的能力。这个级别标志着智能体开始具备一定的自动化能力,但仍然受限于预设规则。
• L2级别(基于模仿学习/强化学习的AI):这个级别的智能体使用模仿学习(IL)或强化学习(RL)的人工智能,取代基于规则的系统,并增强推理与决策功能。它们能够通过学习来改进行为,以更好地适应环境。这个级别显示了智能体开始具备学习和适应环境的能力。
• L3级别(基于大型语言模型的AI):这个级别的智能体采用大型语言模型(LLM)的人工智能,替代IL/RL系统,并增设记忆与反思模块。它们能够处理更复杂的任务,并且具有一定的记忆和自我反思能力。这个级别意味着智能体开始具备更高级的认知功能,如记忆和反思。
• L4级别(自主学习和泛化):在L3级别的基础上,L4级别的智能体提升了自主学习和泛化能力,能够更广泛地应用学到的知识,并在不同情境下进行泛化。这个级别标志着智能体开始接近于人类的认知能力,能够跨领域应用知识。
这些级别不仅对于技术发展至关重要,也对于理解智能体在商业、社会和伦理层面的影响具有重要意义。它们帮助我们设定合理的期望,规划技术发展的方向,并为智能体的未来发展提供了一个参考框架。随着技术的进步,这些级别也可能会继续演变,以适应人工智能的新突破和见解。目前市面上以及大家在用的AI Agent主要为第三级,且正在向第四级发展。
-
AI Agent应用程序利用一个或多个语言模型作为其核心基础或主干,动态生成响应和操作。
-
这些应用程序管理状态和转换,同时实时构建事件链以解决特定的用户查询,从而提供自适应解决方案。
-
AI Agent擅长处理模棱两可或隐含的问题,将它们分解为连续的子步骤,并通过行动、观察和反思的循环迭代处理,直到达到最终解决方案。
-
延迟和成本管理对于对话式实施至关重要,可以平衡响应能力与资源效率。Agentic 实现的延迟可能是个问题。
-
可检查性和可观察性对于生产实施至关重要,开发了强大的机制来揭示AI Agent所经过的状态和路径,从而确保透明度。
-
为了完成任务,AI Agent可以使用各种工具,每个工具都有明确的目的——无论是进行 API 调用、执行计算还是搜索 Web。
-
人机协同 (HITL) 可以用作辅助工具,使AI Agent能够在需要时寻求人工输入,从而扩展其操作能力。
-
可以无缝集成新的AI Agent工具以扩展功能,从而允许持续适应和增强自主AI Agent功能。
-
AI Agent拥有真正的自主权,独立做出决策和执行行动,需要最少的人工监督。自主性级别由 AI Agent 可以循环的迭代次数设置,以得出结论;以及可供使用的工具数量。
-
凭借先进的灵活性,AI Agent可以根据情境需求动态选择和排序工具,采用推理和自适应策略来解决出现的复杂任务。
二、智能体自动化的五个级别
智能体自动化的五个级别如下:
0级:固定自动化
• 这一级别不代表真正的智能体行为,相当于传统的机器人流程自动化(RPA),具有一组固定的规则和完全确定的结果。没有计划或执行控制,因为一切都是在编程过程中预先确定的。人工交互仅限于处理异常,并且任务范围仅限于基于规则的逻辑。
第1级:AI增强自动化
• 这一级别在个人决策层面引入基本的智能体行为。它本质上是固定的自动化,其中一些步骤由大型语言模型(LLM)增强。虽然与传统自动化相比,它提供的好处有限,但它代表了通过约束决策迈向更高级智能体的第一步。
第2级:智能体助理
• 这一级别涉及到能够使用工具调用的特定任务智能体自动化助理。这些系统可以解释用户意图,确定所需的结果,并采取适当的行动,例如总结文本、生成内容或使用特定工具。但是,它们仅限于静态的短期计划。
第3级:计划和反思
• 这一级别涉及到智能体能够根据用户指定的任务,使用各种资源和工具自主规划执行步骤,并根据中间反馈迭代计划直到完成。
第4级:记忆和上下文
• 智能体感知用户上下文,理解用户记忆,有时主动提供个性化服务。
第5级:数字角色
• 智能体代表用户完成事务,代表用户与他人进行交互,保证安全可靠。
以上级别展示了智能体自动化从简单的规则驱动到复杂的、能够自我学习和协作的智能体的发展过程。
三、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】