机器学习专栏(68):时间序列预测实战——从入门到进阶的AI技术指南

目录

一、时间序列预测的核心概念

1.1 什么是时间序列?

1.2 预测任务的类型对比

二、构建预测模型的四大关键步骤

2.1 数据准备与特征工程

2.2 基准模型搭建

2.3 RNN模型进化之路

2.4 模型评估与优化

三、突破单步预测:多步预测实战

3.1 递归预测法

3.2 直接多步预测

3.3 序列到序列预测

四、提升预测精度的五大技巧

4.1 特征扩展策略

4.2 模型融合方案

4.3 不确定性估计

五、行业应用案例解析

5.1 电商销量预测

5.2 股票价格预测

5.3 工业设备预测性维护

六、前沿技术展望

6.1 混合架构趋势

6.2 自监督学习

6.3 可解释性研究

七、完整项目实战:电力负荷预测

7.1 数据概况

7.2 模型架构

7.3 部署方案

八、学习资源推荐


一、时间序列预测的核心概念

1.1 什么是时间序列?

时间序列是按时间顺序排列的数据集合,具有以下特点:

  • 时间依赖性:当前值与历史值相关

  • 趋势性:长期上升/下降趋势(如电商年增长曲线)

  • 季节性:周期性波动(如空调销量夏高冬低)

真实案例:某电商平台发现每年"双十一"订单量是平日的50倍,这种周期性波动就是典型的时间序列特征。

1.2 预测任务的类型对比

任务类型 描述 应用场景
单步预测 预测下一个时间点的值 明日股价预测
多步预测 预测未来多个时间点的值 未来一周天气预测
缺失值填补 补全历史缺失数据 传感器数据修复
异常检测 识别异常波动 金融欺诈监测

二、构建预测模型的四大关键步骤

2.1 数据准备与特征工程

from sklearn.preprocessing import MinMaxScaler

# 标准化处理
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(raw_data)

# 创建滑动窗口数据集
def create_dataset(data, window_size=10):
    X, y = [], []
    for i in range(len(data)-window_size):
        X.append(data[i:i+window_size])
        y.append(data[i+window_size])
    return np.array(X), np.array(y)

2.2 基准模型搭建

# 自定义评估指标
def last_time_step_mse(y_true, y_pred):
    return keras.metrics.mean_squared_error(y_true[:, -1], y_pred[:, -1])

model.compile(loss="mse", metrics=[last_time_step_mse])

朴素预测法:直接使用最后一个观测值作为预测值

naive_pred = test_data[:-1]
mse = mean_squared_error(test_data[1:], naive_pred)

2.3 RNN模型进化之路

2.3.1 简单RNN结构

model = Sequential([
    SimpleRNN(20, input_shape=[None, 1]),
    Dense(1)
])

2.3.2 深度RNN架构

model = Sequential([
    SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),
    SimpleRNN(20, return_sequences=True),
    SimpleRNN(20),
    Dense(1)
])

2.4 模型评估与优化

# 自定义评估指标
d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值