支持向量机SVM详解----最优化问题

本文详细探讨了支持向量机(SVM)中的最优化问题,通过拉格朗日乘子法将有约束问题转化为无约束问题,解释了KKT算法如何处理等式和不等式约束,并介绍了对偶问题在SVM中的应用,强调了对偶优化问题的重要性。
摘要由CSDN通过智能技术生成

最优化问题

拉格朗日乘子法

在这里插入图片描述
在这里插入图片描述在这里插入图片描述如图,左边的等值线即为f(x)–待优化函数,h(x)是我们的约束条件,因此最优解必然在f(x)和h(x)相交的情况下,所以取极值点一定是两函数相切的位置,在两者相切的时候梯度应该是共线的,对在极值点状态的函数做积分即可得到拉格朗日函数。k=1:l,有k 个约束条件,对其求和。拉格朗日函数对x求偏导后为0的情况即为最优解。自此,我们把有约束问题转化为无约束问题。在这里插入图片描述

KKT算法

如果包含等式和不等式两种约束,也可以转换成无约束的优化问题。在这里插入图片描述将不等式条件加入拉格朗日函数中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值