支持向量机SVM详解——SVM数学模型

本文详细探讨了支持向量机(SVM)的数学模型,包括如何从不等式约束转化为优化问题,通过拉格朗日乘子法求解w和b,并解释了为何在支持向量上α不为0,而在其他点上α通常为0,从而阐述SVM的决策边界确定过程。
摘要由CSDN通过智能技术生成

SVM的数学模型

在这里插入图片描述w的方向垂直于直线在这里插入图片描述y(i)是样本的真实结果 (wx+b)是我们的预测结果,即我们的目的是什么。和不等式约束进行转换即可得到g(w)=-y(wx+b)+1<=0,将拉格朗日函数转化成了一个无约束的优化问题。
在这里插入图片描述拉格朗日函数对w和b求导都等于0,代入拉格朗日函数中在这里插入图片描述求解顺序α->w->b
将未知x代入wTx+b,根据得到的结果的符号来判断当前样本是哪一个类别的。只有在支持向量那两条线上的α不等于0,其他清况α=0,在进行支持向量计算机的时候,对支持向量共线的样本点只有x1,x2,x3(第一张图所示),在计算α的时候,考虑的在KKT条件里的约束条件在这里插入图片描述g(x)等于0,如果g(x)不等于0,αi=0,因此再计算α的时候,只代入与支持向量共线的点,此时α不等于0,其他的点α=0.。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值