模型超参数寻优

参考某篇QSAR的sci论文设置

根据上图,我设置我的XGBoost模型:

# 定义要搜索的超参数的候选值
param_grid = {
    'model__learning_rate': [0.1, 0.01, 0.001],  # 调整学习率
    'model__n_estimators': [50, 100, 200, 300,400,500],  # 调整树的数量
    'model__max_depth': [3,4,5,6,7,8,9],  # 调整树的最大深度
    'model__subsample': [0.6,0.7,0.8, 0.9, 1.0],  # 调整子样本的比例
    'model__colsample_bytree': [0.6,0.7,0.8, 0.9, 1.0]  # 每棵树使用的特征比例
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DJ.马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值