LSTM与ConvLSTM

LSTM是RNN的一种变体,解决长期依赖问题,通过记忆细胞和门控机制处理时间序列数据。ConvLSTM在LSTM基础上引入卷积操作,更好地处理空间信息,适用于图像序列等任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LSTM论文链接:LSTM
Conv论文链接:ConvLSTM

LSTM

RNN网络的每个细胞单元在时间轴的维度上,向下一时刻的RNN细胞单元共享权重,来实现处理时间维度的信息,同时RNN网络对短期数据显得较为敏感,但是对长期数据显得疲惫,LSTM是RNN 网络的一种变体,为了解决长期记忆的问题。


LSTM架构背后的中心思想是一个可以随时间保持的记忆细胞 C t C_t Ct),以及调节细胞内外信息流的非线性门控单元(输入门,输出门,遗忘门)。记忆细胞 C t C_t Ct本质上充当了状态信息的累加器。同时采用多个具有参数的控制门对记忆细胞进行访问、写入和清除。

遗忘门

f t = σ ( W f t [ h t − 1 x t ] + b f ) f_t=\sigma(W_ft\begin{bmatrix}h_{t-1}\\x_t\end{bmatrix}+b_f) ft=σ(Wft[ht1xt]+bf)
上一时刻的隐藏状态信息 h t − 1 h_{t-1} ht1与本时刻的数据 x t x_t xt拼接,共同输入到Sigmoid函数,得到的输出结果介于0~1之间,用于判断过去信息是否重要,接近0表示信息不重要可以忘记,接近1表示信息很重要需要记住,最后得到的值会与前一时刻的记忆细胞 C t − 1 C_{t-1} Ct1做乘积运算,用来限制前面的记忆对后面的影响。

输入门
i t = σ ( W t [ h t − 1 x t ] + b i i_t = \sigma(W_t\begin{bmatrix}h_{t-1}\\x_t\end{bmatrix}+b_i it=σ(Wt[ht1xt]+bi
c t ^ = t a n h ( W C t [ h t − 1 x t ] + b c ) \hat{c_t} = tanh(W_Ct\begin{bmatrix}h_{t-1}\\x_t\end{bmatrix}+b_c) ct^=tanh(WCt[ht1xt]+bc)
c t = f t ⊙ c t − 1 + i t ⊙ c t ^ c_t = f_t\odot c_{t-1}+i_t\odot \hat{c_t} ct=ftct1+itct^

i t i_t it与遗忘门的结构几乎一致,产生一个0~1的数值,作为输入重要性因子 C t ^ \hat{C_t} Ct^的输入也是由 h t − 1 , x t h_{t-1},x_t ht1,xt组成,通过tanh激活函数,可以使数据关于y轴对称,起到了数据中心化的效果,加快了数据的收敛,与输入重要性因子相乘用于判断输入信息是否重要,如果重要则该信息可以用于更新记忆细胞

输出门
o t = σ ( W o [ h t − 1 x t ] + b o ) o_t=\sigma(W_o\begin{bmatrix}h_{t-1}\\x_t\end{bmatrix}+b_o) ot=σ(Wo[ht1xt]+bo)
h t = o t ⊙ t a n h ( c n ) h_t = o_t\odot tanh(c_n) ht=ottanh(cn)

o t o_t ot用来衡量输出的重要性,与经过tanh激活函数的该层记忆细胞 C t C_t Ct相乘后,作为本层的输出 y t y_t yt,同时也作为下一层的隐层函数 h t h_t ht

因此遗忘门,输入门,输出门,都是作为非线性激活函数用来衡量细胞内外信息的重要性.三类激活函数具有三个不同的矩阵,我们在训练模型的时候就是为了训练矩阵的数值.在遗忘门中,它决定了 C t − 1 C_{t-1} Ct1是否应该忘记,在输入门中它决定了 C t ^ \hat{C_t} Ct^是否需要加入记忆细胞中用于记忆,在输出门中,它决定了更新的细胞有多重要作用到下一个隐藏层中。

ConvLSTM

FC-LSTM可以看作是LSTM的多变量版本,其中输入、单元输出和状态都是一维向量,尽管它在处理时序信息中十分有效,但是对于空间信息而言存在较多的冗余信息。为了解决这个问题,我们提出了FC - LSTM的扩展,在输入到状态状态到状态的转换中都具有卷积结构。
在这里插入图片描述
如图1所示,我们可以将输入和状态信息,想象成站在空间网格上的向量,此时特征信息从2D图像格式,转变为3D tensor格式。与FC-LSTM不同,ConvLSTM中所有的输入信息、隐藏层、输出信息、门控信息都是3D向量形式。ConvLSTM将LSTM具有的矩阵计算转变成了卷积计算,当前网格中具体细胞信息由上一时刻细胞周围信息和此时的输入计算而来。公式如下:

i t = σ ( W x i ∗ X t + W h i ∗ H t − 1 + W c i ∘ C t − 1 + b i i_t = \sigma(W_{xi}\ast\mathcal{X_{t}}+W_{hi}\ast\mathcal{H_{t-1}}+W_{ci}\circ \mathcal{C_{t-1}}+b_i it=σ(WxiXt+WhiHt1+WciCt1+bi
f t = σ ( W x f ∗ X t + W h f ∗ H t − 1 + W c f ∘ C t − 1 + b f ) f_t=\sigma(W_{xf}\ast\mathcal{X_{t}}+W_{hf}\ast\mathcal{H_{t-1}}+W_{cf}\circ \mathcal{C_{t-1}}+b_f) ft=σ(WxfXt+WhfHt1+WcfCt1+bf)

C t = f t ∘ C t − 1 + i t ∘ t a n h ( W x c ∗ X t + W h c ∗ H t − 1 + b c ) \mathcal{C_t} = f_t\circ C_{t-1}+i_t\circ tanh(W_{xc}\ast\mathcal{X_{t}}+W_{hc}\ast\mathcal{H_{t-1}}+b_c) Ct=ftCt1+ittanh(WxcXt+WhcHt1+bc)
o t = σ ( W x o ∗ X t + W h o ∗ H t − 1 + W c o ∘ C t − 1 + b o ) o_t=\sigma(W_{xo}\ast\mathcal{X_{t}}+W_{ho}\ast\mathcal{H_{t-1}}+W_{co}\circ \mathcal{C_{t-1}}+b_o) ot=σ(WxoXt+WhoHt1+WcoCt1+bo)
H t = o t ∘ t a n h ( C t ) \mathcal{H_t} = o_t\circ tanh(\mathcal{C_t}) Ht=ottanh(Ct)

其中 ∗ \ast 代表卷积, ∘ \circ 代表Hadamard积(相同位置上对应元素的内积)。

<think>好的,用户想了解LSTMConvLSTM的概念、使用方法以及它们的区别。首先,我需要回顾一下这两种模型的基本结构工作原理。 LSTM,也就是长短期记忆网络,是一种特殊的循环神经网络(RNN),主要用于处理序列数据。它通过门控机制(遗忘门、输入门、输出门)来控制信息的流动,解决传统RNN中的梯度消失问题。LSTM在处理时间序列、自然语言处理等领域有广泛应用。比如在视频分类中,LSTM可以捕捉时间上的依赖关系,处理视频帧序列[^1]。 接下来是ConvLSTM,这是LSTM的一个扩展,结合了卷积操作。传统的LSTM在处理空间信息时,通常需要先通过CNN提取空间特征,再将特征序列输入LSTM。而ConvLSTMLSTM的每个门控机制中引入了卷积操作,使得模型能够同时捕捉时间空间上的特征。这在处理时空数据(如视频预测、气象预测)时特别有效。例如,ConvLSTM可以直接处理二维数据,如视频帧,而无需先经过CNN处理[^2]。 用户还提到使用方法,这里需要具体说明两者的输入结构应用场景。LSTM的典型输入是三维的:[样本数, 时间步长, 特征数]。而ConvLSTM2D的输入是五维的:[样本数, 时间步长, 行数, 列数, 通道数],因为它处理的是二维空间数据。比如在Keras中,使用ConvLSTM2D类时,需要调整输入数据的形状以适应这种结构。 关于区别,主要在于ConvLSTM整合了卷积层到LSTM单元内部,直接在时间步内进行卷积运算,从而同时提取时空特征。而传统的LSTM可能需要CNN结合,先处理空间信息再处理时间序列,这样可能不如ConvLSTM高效。 需要确认引用是否正确,用户提供的引用[2]详细说明了ConvLSTM的结构输入要求,这支持了上述使用方法部分。而引用[1][3]可能涉及LSTM的应用基础模型,需要确保引用内容对应。 最后,生成相关问题时要围绕概念、应用、结构差异等方面,帮助用户深入理解两者的不同及适用场景。</think>### LSTMConvLSTM详解 #### 1. **LSTM(长短期记忆网络)** - **概念** LSTM是一种特殊的循环神经网络(RNN),通过门控机制(遗忘门、输入门、输出门)解决传统RNN的梯度消失问题,擅长捕捉时序数据的长期依赖关系。例如,视频分类中可用LSTM分析帧序列的时间关联性[^1]。 - **使用方法** - **输入结构**:三维张量,形状为`[样本数, 时间步长, 特征数]`。 - **典型场景**:时间序列预测(股票价格)、自然语言处理(文本生成)、视频帧序列建模等。 - **Keras示例**: ```python from keras.layers import LSTM model.add(LSTM(units=64, input_shape=(10, 1))) # 输入:10个时间步,每个时间步1个特征 ``` #### 2. **ConvLSTM(卷积长短期记忆网络)** - **概念** ConvLSTM将卷积操作嵌入LSTM单元内部,直接对时空数据进行联合建模。其核心改进是将全连接层替换为卷积层,例如在视频预测中直接处理二维图像序列[^2]。 - **使用方法** - **输入结构**:五维张量,形状为`[样本数, 时间步长, 行数, 列数, 通道数]`(如视频数据:5个时间步,每帧64×64像素,3个RGB通道)。 - **典型场景**:降水预测、移动MNIST手写数字轨迹预测[^3]。 - **Keras示例**: ```python from keras.layers import ConvLSTM2D model.add(ConvLSTM2D(filters=32, kernel_size=(3,3), input_shape=(5, 64, 64, 3))) ``` #### 3. **关键区别** | 特性 | LSTM | ConvLSTM | |--------------------|-------------------------------|-----------------------------------| | **输入维度** | 一维时序数据(如传感器读数) | 二维/三维时空数据(如视频帧) | | **参数计算方式** | 全连接 | 卷积操作(局部感受野) | | **特征提取能力** | 仅时序依赖 | 时空联合特征(如物体移动轨迹) | | **典型应用** | 文本生成、语音识别 | 视频预测、气象数据建模[^2] | #### 4. **选择依据** - **使用LSTM**:数据为纯时序序列(无空间结构),如股票价格、文本。 - **使用ConvLSTM**:数据同时包含时间空间维度(如视频、雷达图像)。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值