Quadrotor_01 [ 数学动力学方程建模 ]

本文是关于四旋翼无人机(Quadrotor)的建模和仿真分析的学习笔记。作者首先介绍了旋转坐标系的概念和旋转矩阵,详细阐述了三维空间中不同坐标轴旋转的数学表达。接着,讨论了四旋翼在平移和旋转过程中的受力分析,应用牛顿第二定律建立了平动方程。此外,还涉及了角速度和力矩的关系,以及PID控制器在四旋翼控制中的应用。
摘要由CSDN通过智能技术生成

关于Quadrotor Aanlysis 的学习笔记记录

01 建模分析

1.1 关于旋转坐标系

  1. 假设向量OA 在XOY坐标系下坐标为(x, y),将坐标系XOY 相当于绕着Z 轴逆时针旋转 θ \theta θ角度 转换成坐标系 X ′ O Y ′ X^{'}OY^{'} XOY,且此时原向量OA在新的坐标系 X ′ O Y ′ X^{'}OY^{'} XOY的坐标就是 ( x ′ , y ′ ) (x^{'},y^{'}) (x,y).x需要寻找同一向量在 不同坐标系下的关系。
    在这里插入图片描述
    几何关系容易发现:
    { x ′ = x cos ⁡ θ + y sin ⁡ θ y ′ = − x sin ⁡ θ + y cos ⁡ θ \left\{ \begin{aligned} x^{'}&=&x \cos \theta+ y\sin \theta\\ y^{'}&=&-x \sin \theta+ y\cos \theta \end{aligned} \right. { xy==xcosθ+ysinθxsinθ+ycosθ
    写成矩阵形式:
    [ x ′ y ′ ] = [ cos ⁡ θ sin ⁡ θ − sin ⁡ θ cos ⁡ θ ] [ x y ] \left[ \begin{matrix} x^{'} \\ y^{'} \end{matrix} \right] = \left[ \begin{matrix} \cos \theta & \sin\theta \\ -\sin \theta & \cos\theta \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] [xy]=[cosθsinθsinθcosθ][xy]
    所以把旋转进行抽象出来,坐标系逆时针旋转 θ \theta θ 度,此时伸出右手相当于大拇指为X轴 食指 Y轴 中指 Z 轴(见下图)。向量在空间中的位置没有发生改变,只是参考坐标系发生改变。
    将此形式扩展到三维坐标系里面进行理解:
    [ A ′ B ′ ] = [ cos ⁡ θ sin ⁡ θ − sin ⁡ θ cos ⁡ θ ] [ A B ] \left[ \begin{matrix} A^{'} \\ B^{'} \end{matrix} \right] = \left[ \begin{matrix} \cos \theta & \sin\theta \\ -\sin \theta & \cos\theta \end{matrix} \right] \left[ \begin{matrix} A \\ B \end{matrix} \right] [AB]=[cosθsinθsinθcosθ][AB]
    则在三维中绕Z 轴旋转 θ \theta θ之后的坐标系就是:
    [ x ′ y ′ z ′ ] = [ cos ⁡ θ sin ⁡ θ 0 − sin ⁡ θ cos ⁡ θ 0 0 0 1 ] [ x y z ] \left[ \begin{matrix} x^{'} \\ y^{'} \\ z^{'} \end{matrix} \right] = \left[ \begin{matrix} \cos \theta & \sin\theta & 0 \\ -\sin \theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] xyz=cosθsinθ0sinθcosθ0001xyz
    在三维中绕X 轴旋转 θ \theta θ之后的坐标系就是:
    [ x ′ y ′ z ′ ] = [ 1 0 0 0 cos ⁡ θ sin ⁡ θ 0 − sin ⁡ θ cos ⁡ θ ] [ x y z ] \left[ \begin{matrix} x^{'} \\ y^{'} \\ z^{'} \end{matrix} \right] = \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin \theta & \cos \theta \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] xyz=1000cosθsinθ0sinθcosθxyz
    在三维中绕Y 轴旋转 θ \theta θ之后的坐标系就是:
    [ x ′ y ′ z ′ ] = [ cos ⁡ θ 0 − sin ⁡ θ 0 1 0 sin
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值