关于Quadrotor Aanlysis 的学习笔记记录
- Author:Dargon
- Note date:2021/01/20
- 学习视频资料来源:
YouTube, 知乎专栏:成为飞控工程师-zinghd
- 论文题目:
Multirotor Aerial Vehicles Modeling, Estimation and control of Quadrotor
01 建模分析
1.1 关于旋转坐标系
- 假设向量OA 在XOY坐标系下坐标为(x, y),将坐标系XOY 相当于绕着Z 轴逆时针旋转 θ \theta θ角度 转换成坐标系 X ′ O Y ′ X^{'}OY^{'} X′OY′,且此时原向量OA在新的坐标系 X ′ O Y ′ X^{'}OY^{'} X′OY′的坐标就是 ( x ′ , y ′ ) (x^{'},y^{'}) (x′,y′).x需要寻找同一向量在 不同坐标系下的关系。
几何关系容易发现:
{ x ′ = x cos θ + y sin θ y ′ = − x sin θ + y cos θ \left\{ \begin{aligned} x^{'}&=&x \cos \theta+ y\sin \theta\\ y^{'}&=&-x \sin \theta+ y\cos \theta \end{aligned} \right. { x′y′==xcosθ+ysinθ−xsinθ+ycosθ
写成矩阵形式:
[ x ′ y ′ ] = [ cos θ sin θ − sin θ cos θ ] [ x y ] \left[ \begin{matrix} x^{'} \\ y^{'} \end{matrix} \right] = \left[ \begin{matrix} \cos \theta & \sin\theta \\ -\sin \theta & \cos\theta \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] [x′y′]=[cosθ−sinθsinθcosθ][xy]
所以把旋转进行抽象出来,坐标系逆时针旋转 θ \theta θ 度,此时伸出右手相当于大拇指为X轴 食指 Y轴 中指 Z 轴(见下图)。向量在空间中的位置没有发生改变,只是参考坐标系发生改变。
将此形式扩展到三维坐标系里面进行理解:
[ A ′ B ′ ] = [ cos θ sin θ − sin θ cos θ ] [ A B ] \left[ \begin{matrix} A^{'} \\ B^{'} \end{matrix} \right] = \left[ \begin{matrix} \cos \theta & \sin\theta \\ -\sin \theta & \cos\theta \end{matrix} \right] \left[ \begin{matrix} A \\ B \end{matrix} \right] [A′B′]=[cosθ−sinθsinθcosθ][AB]
则在三维中绕Z
轴旋转 θ \theta θ之后的坐标系就是:
[ x ′ y ′ z ′ ] = [ cos θ sin θ 0 − sin θ cos θ 0 0 0 1 ] [ x y z ] \left[ \begin{matrix} x^{'} \\ y^{'} \\ z^{'} \end{matrix} \right] = \left[ \begin{matrix} \cos \theta & \sin\theta & 0 \\ -\sin \theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] ⎣⎡x′y′z′⎦⎤=⎣⎡cosθ−sinθ0sinθcosθ0001⎦⎤⎣⎡xyz⎦⎤
在三维中绕X
轴旋转 θ \theta θ之后的坐标系就是:
[ x ′ y ′ z ′ ] = [ 1 0 0 0 cos θ sin θ 0 − sin θ cos θ ] [ x y z ] \left[ \begin{matrix} x^{'} \\ y^{'} \\ z^{'} \end{matrix} \right] = \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin \theta & \cos \theta \end{matrix} \right] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] ⎣⎡x′y′z′⎦⎤=⎣⎡1000cosθ−sinθ0sinθcosθ⎦⎤⎣⎡xyz⎦⎤
在三维中绕Y
轴旋转 θ \theta θ之后的坐标系就是:
[ x ′ y ′ z ′ ] = [ cos θ 0 − sin θ 0 1 0 sin