想训练AI模型,实验室GPU显存不够怎么办

文章探讨了OpenAI推动的人工智能应用中,大模型对高算力和显存的需求,以及高校实验室面临的困难。DeepLn算力云以低成本提供大显存GPU,如A100、RTX8000等,显著降低了科研用户在云端计算的成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近年来,OpenAI带火了大模型,人工智能应用进入了黄金时代,几乎各行各业都在努力进行人工智能落地应用探索。

客观上说,大模型效果的确好,对算力资源的消耗却非常高。其中训练时间长不说,显存的硬性需求更是直接决定了能否完成训练。虽然通过程序优化能够降低一些显存使用,但又可能面临着精度损失,对于精益求精的科研工作者而言,的确是让人纠结。

我们DeepLn算力云以常见的开源模型LLaMA为例,不同参数量下的微调,无论是LoRA微调还是全量微调,所需相关显存和算力都不小。

模型

LoRa (4Bit量化)最低显存

全参微调(FP16)最低显存

LoRA微调建议GPU

全参微调建议GPU

LLaMA-7B

6GB

84GB

RTX 3060,

GTX 1660, 2060

AMD 5700 XT

RTX 3050

RTX4090 * 4,

Tesla V100 32G * 4

Tesla V100 16G * 6

Tesla A100 40G * 2

Tesla A100 80G * 2

LLaMA-13B

10GB

156GB

AMD 6900 XT

RTX 2060 12GB

RTX3060,3080

A2000

RTX 4090 * 8

Tesla V100 32G * 6

Tesla A100 40G * 4

Tesla A100 80G *2

LLaMA-30B

20GB

360GB

A5000, RTX 6000

RTX3090, 4090

Tesla V100

Tesla P40

Tesla V100 32G * 12

Tesla A100 40G * 10

Tesla A100 80G * 6

LLaMA-65B

40GB

780GB

A100 40GB, A40

2×3090, 2×4090

RTX A6000

RTX 8000

Tesla V100 32G * 26

Tesla A100 40G * 20

Tesla A100 80G * 10

ChatGLM2-6B

6GB

84GB

RTX 3060

GTX 1660, 2060

AMD 5700 XT

RTX 3050

RTX4090 * 4

Tesla V100 32G * 4

Tesla V100 16G * 6

Tesla A100 40G * 2

Tesla A100 80G * 2

从上面的例子来看,一般的高校实验室,的确是可能存在显存不足的情况,特别是全量训练或者微调时问题尤为突出。此时想让实验室新购置设备更是遥遥无期,估计开会还没讨论出结果,好多炼丹侠的deadline就到了。

更何况一套算力服务器动辄几十上百万,还要有配套的无尘机房和运维人员,这简直是三杀。

算力不够,租用云端GPU算力就成为不少科研用户的首选,然而打开某里云、某为云、某讯云一看,心里瞬间凉了半截儿,30GB以上显存的显卡,动不动就要几十元一小时,跑个程序下来,上千块就没了,这经费燃烧的速度一般人扛不住,真要是硬着头皮用下来,怕是一些实验室老大会扒了炼丹侠们的皮(手动狗头)。

更何况现在大显存算力供不应求,像A100之类的甚至被好多云计算平台下架自用了,根本轮不到外面用户去租。

这个时候,就要推荐我们的DeepLn算力云了,A100、RTX8000、V100这些大显存GPU管饱管够,关键是价格低到令人心动,低到只有你想不到,没有我们做不到。大显存算力真的被做到了白菜价。

图中40G显存的A100、48G的RTX8000都做到了2元档,32GB显存的V100更是做到了不到2元,真心说,这价格简直杀嘎嘎乱杀。

那么有较真的童鞋就要问了,DeepLn算力云凭啥能这么便宜,我只能说其中也有小编的功劳了,大概是小编负责嘎嘎,老板和技术负责剩下的乱杀吧,更何况现在微信绑定还送30元算力券,大家快来试试吧。

### 如何配置DeepSeek以确保使用GPU进行计 为了确保DeepSeek能够利用GPU资源进行高效的推理和训练操作,需遵循特定的配置步骤。这些步骤不仅适用于云端平台上的部署,也适合本地计机环境。 #### 使用蓝耘GPU平台 完成账号注册后,在该平台上运行Deepseek-R1-32b模型前,应确认已正确设置了GPU可见性和分配策略[^1]。这通常意味着要验证所选实例类型确实包含了足够的NVIDIA GPU硬件支持,并且安装了必要的驱动程序和支持库。 对于采用混合专家(MoE)架构设计的大规模预训练语言模型而言,合理的资源配置至关重要。这意味着不仅要考虑单个节点内的多GPU互联效率,还要关注跨节点间的通信开销优化问题。 #### 配置AMD GPU设备 当目标环境中存在AMD Radeon系列或其他兼容OpenCL标准的图形处理单元时,则需要额外设定`HIP_VISIBLE_DEVICES`环境变量来限定参与工作的具体物理设备编号。例如: ```bash export HIP_VISIBLE_DEVICES=0 ``` 此命令会使得只有ID为0的第一张显卡被应用程序识别并调用其计[^2]。 #### 本地PC部署建议 针对希望在个人电脑上实现高性能AI应用开发的需求者来说,选择合适的硬件组合显得尤为重要。推荐方案如下: - CPU:Intel Core i7/i9 或 AMD Ryzen 7/9 系列以上; - RAM:至少32GB DDR4内存; - Storage:NVMe SSD作为系统盘; - GPU:RTX 3080及以上级别产品; 值得注意的是,实际需求可能会因为具体的任务负载而有所变化,因此可以根据项目特点灵活调整上述规格[^3]。 最后提醒一点,无论是在云服务还是自建实验室里实施此类工作之前,请务必仔细阅读官方文档中的最新指导说明,以便获得最准确的操作指南和技术参数表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值