Vitis AI 2.5 环境搭建(Ubuntu20.04) + 在 KV260 中配置 PYNQ

目录

1. 环境

2. 工具及版本介绍

2.1 工具版本兼容性

2.2 DPU结构

2.3 DPU命名规则

3. Vitis AI 配置要点

3.1 配置安装 Docker Repo

3.2 Install Docker Engine

3.3 配置 docker hub mirror

3.4 添加 Docker 用户组并测试

3.5 克隆 Vitis AI 库

3.6 构建 Docker

3.6.1 Docker 常用命令

3.6.2 从 docker hub 查找镜像

3.6.3 使用预构建的镜像

3.6.4 从 Recipes 构建镜像

3.7 运行 Docker

3.8 激活 conda 环境

3.9 配置 Jupyter Lab

4. PYNQ for KV260 配置要点

4.1 烧录 Ubuntu 22.04 LTS

4.2 配置网络

4.3 关闭图形桌面

4.4 添加 AMD 软件源并更新升级 Kernel

4.5 配置 Docker (optional)

4.6 安装 xrt zocl driver (optional)

4.7 安装 Pynq (需配置代理)

4.8 Jupyter Lab 安装中文支持包

4.9 域名解析

5. 补充说明

5.1 git 直接下载 zip

5.2 Docker 代理

5.3 保存修改的 Docker 容器


1. 环境

Host: Ubuntu 22.04.4 LTS

Embeded: kv260 with Ubuntu 22.04

AMD KV260 starts with Ubuntu 22.04https://www.amd.com/zh-cn/products/system-on-modules/kria/k26/kv260-vision-starter-kit/getting-started-ubuntu/getting-started.html

2. 工具及版本介绍

GitHub - Xilinx/Vitis-AI at 2.5Vitis AI is Xilinx’s development stack for AI inference on Xilinx hardware platforms, including both edge devices and Alveo cards. - GitHub - Xilinx/Vitis-AI at 2.5https://github.com/Xilinx/Vitis-AI/tree/2.5

2.1 工具版本兼容性

IP and Tool Version Compatibility — Vitis™ AI 3.0 documentation

Software Tools Version DPUCDZX8G IP Version ViTis AI Release Version
Vivado / Vitis / Petalinux 2022.2 4.1 v3.0
Vivado / Vitis / Petalinux 2022.1 4 v2.5
Vivado / Vitis / Petalinux 2021.2 3.4 v2.0
Vivado / Vitis / Petalinux 2021.1 3.3 v1.4
Vivado / Vitis / Petalinux 2020.2 3.3 v1.3
Vivado / Vitis / Petalinux 2020.1 3.2 v1.2
Vivado / Vitis / Petalinux 2019.2 3.2 v1.1
Vivado / Vitis / Petalinux 2019.1 3.1 v1.0
Vivado / Petalinux 2019.1 3 N/A
Vivado / Petalinux 2018.2 2 N/A
Vivado / Petalinux 2018.1 1 First Release

PYNQ for Kria SOMs:

PYNQ for Kria SOMsPYNQ support and examples for Kria SOMs. Contribute to Xilinx/Kria-PYNQ development by creating an account on GitHub.https://github.com/Xilinx/Kria-PYNQ

DPU-PYNQ (v2.5)
This overlay contains a Vitis-AI 2.5.0 Deep Learning Processor Unit (DPU) and comes with a variety of notebook examples with pre-trained ML models.

Supported boards: KV260, KR260, KD240

从官方给的信息可以看出,KV260 PYNQ Installation 使用的是 Vitis-AI 2.5.0,对应的工具版本Vivado / Vitis / Petalinux 2022.1。

2.2 DPU结构

2.3 DPU命名规则

KV260使用DPUCZDX8G IP,表示:

应用领域:CNN

硬件平台:Zynq DDR

量化方法:decent

Decent:一种量化与优化工具,主要用于对神经网络模型进行压缩和量化,以适配于赛灵思的DPU硬件。Decent支持多种量化策略,包括定点量化(通常为INT8量化)。这种工具的目的是通过减小模型的存储与计算需求来优化执行效率,同时尽量保持推理精度。
Integer threshold:一种

### 安装Vitis在Linux上的详细步骤 #### 准备环境 为了成功安装Vitis,在CentOS 8.1环境下需注意几个关联事项。确保宿主机已配置好VirtualBox并创建了CentOS虚拟机实例,同时设置共享文件夹以便于传输必要的安装包和其他资源[^3]。 #### 下载与准备安装包 前往Xilinx官方网站下载对应版本的Vitis安装程序。对于特定硬件平台的支持,可能还需要额外获取相应的硬件描述文件,这可以通过`petalinux-config --get-hw-description ./xsa`命令来完成,其中`./xsa`指向的是包含硬件定义的目录位置[^1]。 #### 执行安装过程 启动终端窗口进入之前设定好的共享文件夹路径,解压所获得的Vitis压缩包,并按照提示逐步执行安装向导直至结束。此过程中可能会涉及到接受许可协议条款以及选择具体的组件选项等内容。 #### 配置开发环境 安装完成后,建议重启系统使新加入的库和工具链生效。之后可以验证安装是否成功的常用方法之一就是尝试建立一个新的Vitis项目并与现有的Vivado工程项目相连接,以此为基础开展后续的应用层面上的工作[^4]。 #### 测试安装成果 最后一步是对整个流程做一个完整的测试案例演示。比如可以在目标板卡(如KV260)上部署预训练模型并通过简单的推理操作确认一切正常运作。具体做法是从远程服务器复制AI运行时镜像到本地设备,接着展开该档案并将示例应用程序置于适当的位置执行,观察输出结果以判断其准确性[^5]。 ```bash # 示例:从主机拷贝至目标板卡 scp vitis_ai_runtime_r3.0.0_image_video.tar.gz root@ip_address:~/ # 解压并定位到例子目录 tar -xzvf vitis_ai_runtime_r3.0.0_image_video.tar.gz -C Vitis-AI/examples/vai_runtime/ cd ~/Vitis-AI/examples/vai_runtime/resnet50 # 运行ResNet-50模型推断脚本 resnet50 /usr/share/vitis_ai_library/models/resnet50_pruned_0_5_pt/resnet50_pruned_0_5.xmodel ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值