🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳
视频地址:使用yolo11进行交通标志检测(tt100k)配套视频_哔哩哔哩_bilibili
【大作业-25】使用yolo11构建tt100k交通目标检测系统
🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳
各位小伙伴,大家好,这里是肆十二,今天我给大家带了的是基于yolo11的交通标志检测系统,该系统使用tt100k交通识别数据进行开发,一共包含有42个类的交通标志,我们分别基于yolov5、yolov8和yolo11进行了训练。本博客中我们将会按照教会大家对这个数据集进行训练、测试以及使用图形化的界面进行模型的加载来完成图像和视频的检测,效果图如下所示。
项目实战
进行项目实战之前请务必安装好pytorch和miniconda。
不会的小伙伴请看这里:Python项目配置前的准备工作-CSDN博客
GPU服务器训练
目前蓝耘GPU可以薅羊毛,推荐小伙伴从这个网站使用GPU云来进行训练,新用户注册会获得40元的代金券。
注册地址:免费40元额度3090GPU薅羊毛地址
🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏🐏
注册成功之后进入官网,可以看到这里我们已经获得了一张30元的代金券。
从上方的导航栏中进入云容器的列表,根据你的需要选择对应的计费方式、GPU型号以及地区,比如我这里选择的就是按量计费,按量计费是按照小时进行计费的,你不用的时候直接关掉即可。
进入选择页面之后我们需要选择服务器对应的镜像,为了方便后期环境的管理,我们这里选择conda的环境之后启动我们的服务器即可。
成功启动之后如下所示
这里我教大家两种方式使用服务器,第一种方式是通过jupyter直接访问。
由于我们本地需要上传的文件比较大,通过直接拖动上传的方式可能较慢,所以这里我们使用专业的文件传输软件xftp进行上传,软件的下载地址位于:家庭/学校免费 - NetSarang Website,下载之后使用你得个人邮箱进行注册即可。
我们首先需要从我们的服务器实例页面找到服务器的地址、端口号和密码等信息。
启动之后点击新建会话,输入服务器的ip地址
将我们的数据集和代码资源从本地传入到蓝耘的服务器上。
文件上传完成之后,就可以开始本期项目的配置了。首先通过unzip指令将两个压缩包进行解压。
解压完成之后你将会获得两个压缩包,如下所示。
为了能够让库的下载比较流畅,这里我们先切换为国内的源,在蓝耘的配置界面可以直接完成切换,这里我们将pip和conda都切换为国内的镜像。
创建和激活虚拟环境。
conda create -n yolo11 python==3.8.5
conda activate yolo11
安装gpu版本的torch
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3
对torch进行测试
安装其他的依赖库
调整数据集配置文件中的数据集路径
开始训练,训练结果将会保存在runs目录下,训练过程中,你可以通过蓝耘的资源监控界面来观察你的资源占用情况。
号外! 蓝耘现在有双十二的活动,小伙伴们快去试试把!

本地模型训练
环境配置, 执行下列指令创建并激活虚拟环境
conda create -n yolo python==3.8.5
conda activate yolo
执行下列执行安装pytorch
conda install pytorch==1.8.0 torchvision torchaudio cudatoolkit=10.2 # 注意这条命令指定Pytorch的版本和cuda的版本
conda install pytorch==1.10.0 torchvision torchaudio cudatoolkit=11.3 # 30系列以上显卡gpu版本pytorch安装指令
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cpuonly # CPU的小伙伴直接执行这条命令即可
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 #服务器的小伙伴使用这个
在项目目录下执行下列指令进行其他库的安装
pip install -v -e .
环境创建完成之后请使用pycharm打开你的项目,并在pycharm的右下角选择你项目对应的虚拟环境。
模型训练使用的脚本为step1_start_train.py
,进行模型训练之前,请先按照配置好你本地的数据集。数据集在 ultralytics\cfg\datasets\A_my_data.yaml
目录下,你需要将数据集的根目录更换为你自己本地的目录。
更换之后修改训练脚本配置文件的路径,直接右键即可开始训练。
如果你想要在gpu上训练,请将这里的device设置为0
训练开始前如果出现报错,有很大的可能是数据集的路径没有配置正确,请检查数据集的路径,保证数据集配置没有问题。训练之后的结果将会保存在runs目录下。
模型测试
模型的测试主要是对map、p、r等指标进行计算,使用的脚本为 step2_start_val.py
,模型在训练的最后一轮已经执行了测试,其实这个步骤完全可以跳过,但是有的朋友可能想要单独验证,那你只需要更改测试脚本中的权重为你自己所训练的权重路径,即可单独进行测试。
图形化界面封装
图形化界面进行了升级,本次图形化界面的开发我们使用pyside6来进行开发。PySide6 是一个开源的Python库,它是Qt 6框架的Python绑定。Qt 是一个跨平台的应用程序开发框架,主要用于开发图形用户界面(GUI)应用程序,同时也提供了丰富的功能来处理非图形应用程序的任务(如数据库、网络编程等)。PySide6 使得开发者能够使用 Python 编写 Qt 6 应用程序,因此,它提供了Python的灵活性和Qt 6的强大功能。图形化界面提供了图片和视频检测等多个功能,图形化界面的程序为step3_start_window_track.py
。
如果你重新训练了模型,需要替换为你自己的模型,请在这里进行操作。
如果你想要对图形化界面的题目、logo等进行修改,直接在这里修改全局变量即可。
登录之后上传图像或者是上传视频进行检测即可。
文档
背景与意义
交通标志是道路交通管理系统中不可或缺的一部分,它们向驾驶员和行人传达道路安全、行驶方向、速度限制等关键信息。传统上,交通标志的检测和识别主要依赖于人工观察和手动检查,这不仅费时费力,而且存在较高的误差风险,尤其是在复杂和恶劣的环境条件下。因此,自动化的交通标志检测技术的提出和发展显得尤为重要。
随着计算机视觉和深度学习技术的飞速发展,自动化交通标志检测系统逐渐成为研究热点。基于深度学习的交通标志检测技术能够显著提高检测精度和实时性,极大地改善交通管理效率,尤其在自动驾驶、智能交通系统和车载辅助驾驶系统等领域具有广泛的应用前景。
在众多深度学习模型中,YOLO(You Only Look Once)系列模型因其卓越的实时性和较高的准确率,已被广泛应用于物体检测任务。尤其是YOLO11作为一种高效的目标检测模型,通过优化网络结构和引入更强大的特征提取和增强机制,能够在保持高精度的同时达到较快的推理速度。因此,利用YOLO11进行交通标志检测,具有较高的理论价值和实际意义。
相关文献综述
YOLO系列模型的演变 YOLO系列模型自首次提出以来,已经经历了多个版本的演变。YOLOv1采用全卷积神经网络(CNN)进行物体检测,其优势在于速度快,但准确率较低。YOLOv2引入了更深的网络结构和Batch Normalization(批量归一化),使得检测精度有所提高。YOLOv3进一步优化了模型,采用了多尺度预测方式来处理不同大小的物体,极大提升了检测的鲁棒性。YOLOv4进一步优化了模型性能,引入了CSPDarknet53作为主干网络、Mish激活函数、跨阶段部分连接(CSP)等新技术,取得了更高的检测精度和推理速度。
交通标志检测的挑战 交通标志检测面临着许多挑战,包括标志尺寸变化、遮挡、光照变化、背景复杂等因素。此外,交通标志种类繁多,如限速标志、停车标志、警告标志等,不同标志具有不同的形状、颜色和结构。因此,在进行交通标志检测时,需要考虑到多种因素,以提高模型在不同环境下的检测效果。
基于YOLO的交通标志检测研究 近年来,越来越多的研究者尝试基于YOLO进行交通标志的检测。Zhou等(2020)提出了一种改进的YOLOv3模型,用于检测不同种类的交通标志。他们通过引入自适应阈值和多任务学习机制,显著提高了检测精度和鲁棒性。Kuzin等(2020)则利用YOLOv4对交通标志进行高效检测,提出了一种结合区域注意力机制的YOLOv4改进方法,有效增强了模型在复杂背景下的检测能力。Simion等(2021)则针对交通标志的标注问题,提出了一种基于YOLOv4的多尺度检测方法,提高了对小尺寸标志的检测精度。
YOLO11在交通标志检测中的优势 与传统的检测算法相比,YOLO11具有显著的优势。其强大的特征提取能力和较快的推理速度使得YOLO11非常适合应用于交通标志检测任务。研究表明,YOLO11在交通标志检测中的表现优于YOLOv5和YOLOv8,并且在硬件资源受限的情况下,仍能够实现较高的检测性能。
交通标志数据集 为了促进交通标志检测技术的发展,多个公开数据集被提出,常见的包括德国交通标志数据集(GTSRB)、法国交通标志数据集(TST)等。这些数据集为研究人员提供了丰富的标注数据,促进了交通标志检测技术的进一步研究和应用。YOLO系列模型在这些数据集上的表现良好,能够实现高精度的交通标志检测。
本文算法介绍
yolo系列已经在业界可谓是家喻户晓了,下面是yolo11放出的性能测试图,其中这种图的横轴为模型的速度,一般情况下模型的速度是通过调整卷积的深度和宽度来进行修改的,纵轴则表示模型的精度,可以看到在同样的速度下,11表现出更高的精度。
YOLO架构的核心由三个基本组件组成。首先,主干作为主要特征提取器,利用卷积神经网络将原始图像数据转换成多尺度特征图。其次,颈部组件作为中间处理阶段,使用专门的层来聚合和增强不同尺度的特征表示。第三,头部分量作为预测机制,根据精细化的特征映射生成目标定位和分类的最终输出。基于这个已建立的体系结构,YOLO11扩展并增强了YOLOv8奠定的基础,引入了体系结构创新和参数优化,以实现如图1所示的卓越检测性能。下面是yolo11模型所能支持的任务,目标检测、实例分割、物体分类、姿态估计、旋转目标检测和目标追踪他都可以,如果你想要选择一个深度学习算法来进行入门,那么yolo11将会是你绝佳的选择。
为了能够让大家对yolo11网络有比较清晰的理解,下面我将会对yolo11的结构进行拆解。
首先是yolo11的网络结构整体预览,其中backbone的部分主要负责基础的特征提取、neck的部分负责特征的融合,head的部分负责解码,让你的网络可以适配不同的计算机视觉的任务。
-
主干网络(BackBone)
-
Conv
卷积模块是一个常规的卷积模块,在yolo中使用的非常多,可以设计卷积的大小和步长,代码的详细实现如下:
class Conv(nn.Module): """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): """Initialize Conv layer with given arguments including activation.""" super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): """Apply convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): """Perform transposed convolution of 2D data.""" return self.act(self.conv(x))
-
C3k2
C3k2块被放置在头部的几个通道中,用于处理不同深度的多尺度特征。他的优势有两个方面。一个方面是这个模块提供了更快的处理:与单个大卷积相比,使用两个较小的卷积可以减少计算开销,从而更快地提取特征。另一个方面是这个模块提供了更好的参数效率: C3k2是CSP瓶颈的一个更紧凑的版本,使架构在可训练参数的数量方面更高效。
C3k2模块主要是为了增加特征的多样性,其中这块模块是由C3k模块演变而来。它通过允许自定义内核大小提供了增强的灵活性。C3k的适应性对于从图像中提取更详细的特征特别有用,有助于提高检测精度。C3k的实现如下。
class C3k(C3): """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3): """Initializes the C3k module with specified channels, number of layers, and configurations.""" super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n))) self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
如果将c3k中的n设置为2,则此时的模块即为C3K2模块,网络结构图如下所示。
该网络的实现代码如下。
class C3k2(C2f): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True): """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks.""" super().__init__(c1, c2, n, shortcut, g, e) self.m = nn.ModuleList( C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n) )
-
C2PSA
PSA的模块起初在YOLOv10中提出,通过自注意力的机制增加特征的表达能力,相对于传统的自注意力机制而言,计算量又相对较小。网络的结构图如下所示,其中图中的mhsa表示的是多头自注意力机制,FFN表示前馈神经网络。
在这个基础上添加给原先的C2模块上添加一个PSA的旁路则构成了C2PSA的模块,该模块的示意图如下。
网络实现如下:
class C2PSA(nn.Module): """ C2PSA module with attention mechanism for enhanced feature extraction and processing. This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations. Attributes: c (int): Number of hidden channels. cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations. Methods: forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations. Notes: This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules. Examples: >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5) >>> input_tensor = torch.randn(1, 256, 64, 64) >>> output_tensor = c2psa(input_tensor) """ def __init__(self, c1, c2, n=1, e=0.5): """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio.""" super().__init__() assert c1 == c2 self.c = int(c1 * e) self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv(2 * self.c, c1, 1) self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))) def forward(self, x): """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor.""" a, b = self.cv1(x).split((self.c, self.c), dim=1) b = self.m(b) return self.cv2(torch.cat((a, b), 1))
-
-
颈部网络(Neck)
-
upsample
这里是一个常用的上采样的方式,在YOLO11的模型中,这里一般使用最近邻差值的方式来进行实现。在
torch
(PyTorch)中,upsample
操作是用于对张量(通常是图像或特征图)进行上采样(增大尺寸)的操作。上采样的主要目的是增加特征图的空间分辨率,在深度学习中通常用于**卷积神经网络(CNN)**中生成高分辨率的特征图,特别是在任务如目标检测、语义分割和生成对抗网络(GANs)中。PyTorch 中的
torch.nn.functional.upsample
在较早版本提供了上采样功能,但在新的版本中推荐使用torch.nn.functional.interpolate
,功能相同,但更加灵活和标准化。主要参数如下:
torch.nn.functional.interpolate
函数用于上采样,支持不同的插值方法,常用的参数如下:torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None)
-
input
:输入的张量,通常是 4D 的张量,形状为(batch_size, channels, height, width)
。 -
size
:输出的目标尺寸,可以是整型的高度和宽度(如(height, width)
),表示希望将特征图调整到的具体尺寸。 -
scale_factor
:上采样的缩放因子。例如,scale_factor=2
表示特征图的高度和宽度都扩大 2 倍。如果设置了scale_factor
,则不需要再设置size
。 -
mode
:插值的方式,有多种可选插值算法:
'nearest'
:最近邻插值(默认)。直接复制最近的像素值,计算简单,速度快,但生成图像可能比较粗糙。'linear'
:双线性插值,适用于 3D 输入(即 1D 特征图)。'bilinear'
:双线性插值,适用于 4D 输入(即 2D 特征图)。'trilinear'
:三线性插值,适用于 5D 输入(即 3D 特征图)。'bicubic'
:双三次插值,计算更复杂,但生成的图像更平滑。
-
align_corners
:在使用双线性、三线性等插值时决定是否对齐角点。如果为True
,输入和输出特征图的角点会对齐,通常会使插值结果更加精确。
-
-
Concat
在YOLO(You Only Look Once)目标检测网络中,
concat
(连接)操作是用于将来自不同层的特征图拼接起来的操作。其作用是融合不同尺度的特征信息,以便网络能够在多个尺度上更好地进行目标检测。调整好尺寸后,沿着通道维度将特征图进行拼接。假设我们有两个特征图,分别具有形状 (H, W, C1) 和 (H, W, C2),拼接后得到的特征图形状将是 (H, W, C1+C2),即通道数增加了。一般情况下,在进行concat操作之后会再进行一次卷积的操作,通过卷积的操作可以将通道数调整到理想的大小。该操作的实现如下。class Concat(nn.Module): """Concatenate a list of tensors along dimension.""" def __init__(self, dimension=1): """Concatenates a list of tensors along a specified dimension.""" super().__init__() self.d = dimension def forward(self, x): """Forward pass for the YOLOv8 mask Proto module.""" return torch.cat(x, self.d)
-
-
头部(Head)
YOLOv11的Head负责生成目标检测和分类方面的最终预测。它处理从颈部传递的特征映射,最终输出图像内对象的边界框和类标签。一般负责将特征进行映射到你对应的任务上,如果是检测任务,对应的就是4个边界框的值以及1个置信度的值和一个物体类别的值。如下所示。
# Ultralytics YOLO 🚀, AGPL-3.0 license """Model head modules.""" import copy import math import torch import torch.nn as nn from torch.nn.init import constant_, xavier_uniform_ from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors from .block import DFL, BNContrastiveHead, ContrastiveHead, Proto from .conv import Conv, DWConv from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer from .utils import bias_init_with_prob, linear_init __all__ = "Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder", "v10Detect"
基于上面的设计,yolo11衍生出了多种变种,如下表所示。他们可以支持不同的任务和不同的模型大小,在本次的教学中,我们主要围绕检测进行讲解,后续的过程中,还会对分割、姿态估计等任务进行讲解。
YOLOv11代表了CV领域的重大进步,提供了增强性能和多功能性的引人注目的组合。YOLO架构的最新迭代在精度和处理速度方面有了显著的改进,同时减少了所需参数的数量。这样的优化使得YOLOv11特别适合广泛的应用程序,从边缘计算到基于云的分析。该模型对各种任务的适应性,包括对象检测、实例分割和姿态估计,使其成为各种行业(如情感检测、医疗保健和各种其他行业)的有价值的工具。它的无缝集成能力和提高的效率使其成为寻求实施或升级其CV系统的企业的一个有吸引力的选择。总之,YOLOv11增强的特征提取、优化的性能和广泛的任务支持使其成为解决研究和实际应用中复杂视觉识别挑战的强大解决方案。
实验结果分析
数据集介绍
本次我们使用的数据集为tt100k。数据集官方地址
TT100K(Tsinghua-Tencent 100K)交通标志检测数据集是由清华大学与腾讯联合发布的一个大规模、高质量的交通标志图像数据集。该数据集旨在促进交通标志检测、识别及相关计算机视觉任务的研究与发展,特别是在自动驾驶和智能交通系统领域。该数据集具有以下特点
规模庞大
-
- 图像数量:TT100K 数据集包含约10万张高分辨率图像,覆盖了多种交通环境和场景。
- 标注数量:数据集中标注了超过100万个交通标志实例,涵盖了多种类型和类别。
- 多样化的交通标志类别
- 类别数量:TT100K 包含超过300种不同类型的交通标志,涵盖了限速标志、停车标志、警告标志、指示标志等多个类别。
- 细粒度分类:每个大类下进一步细分,提供更为详细的分类标签,有助于提高模型的识别精度和泛化能力。
- 高质量的标注
- 精确的边界框:所有交通标志实例均通过专业团队进行精确标注,确保边界框的准确性。
- 多样的标注信息:除了边界框外,数据集还包含了交通标志的类别标签、颜色信息及其他相关属性,有助于多任务学习和多模态研究。
- 丰富的场景与环境条件
- 多样的拍摄条件:数据集中的图像涵盖了白天、夜晚、不同天气条件(如雨天、晴天、雾天等)以及各种光照变化,确保模型在各种实际应用场景中的鲁棒性。
- 多种视角和距离:交通标志在图像中的视角、距离和尺寸各异,模拟了真实道路环境中的复杂情况。
原始的数据集中包含的类别众多,有的类别中所对应的交通标志实例的数量不足五个,这样的数据加入模型进行训练之后会导致训练结果极差,为了避免这种情况,我提前对数据集进行了清理,清理之后的数据集只保留了其中的42个类别,如下所示。
path: /root/autodl-tmp/yolo-data/tt100/reTT100K
train: # train images (relative to 'path') 16551 images
- images/train
val: # val images (relative to 'path') 4952 images
- images/val
test: # test images (optional)
- images/test
names: ['i2','i4','i5','il100','i160','il80','io','ip','p10','p11',
'p12','p19','p23','p26','p27','p3','p5','pó','pg','ph4','ph4.5',
'pl100','pl120','pl20','pl30','pl40','pl5','pl50','pl60','pl70',
'pL80','pm20','pm30','pm55','pn','pne','po','pr40','w13','w55',
'w57', 'w59']
这里的名字基本都采用的简写的方式,为了方便大家进行索引,我在这里放了每个名字对应的标志用于帮助大家进行对照。
以及下面是数据集中每个类别对应的实例数量和边界框大小的基本分析,从下图可以看出,大部分目标都比较小,属于是小目标检测的内容。
实验结果分析
实验结果的指标图均保存在runs目录下, 大家只需要对实验过程和指标图的结果进行解析即可。
如果只指标图的定义不清晰,请看这个位置:YOLO11模型指标解读-mAP、Precision、Recall_yolo11模型训练特征图-CSDN博客
train/box_loss(训练集的边界框损失):随着训练轮次的增加,边界框损失逐渐降低,表明模型在学习更准确地定位目标。
train/cls_loss(训练集的分类损失):分类损失在初期迅速下降,然后趋于平稳,说明模型在训练过程中逐渐提高了对交通标志的分类准确性。
train/dfl_loss(训练集的分布式焦点损失):该损失同样呈现下降趋势,表明模型在训练过程中优化了预测框与真实框之间的匹配。
metrics/precision(B)(精确度):精确度随着训练轮次的增加而提高,说明模型在减少误报方面表现越来越好。
metrics/recall(B)(召回率):召回率也在逐渐上升,表明模型能够识别出更多的真实交通标志。
val/box_loss(验证集的边界框损失):验证集的边界框损失同样下降,但可能存在一些波动,这可能是由于验证集的多样性或过拟合的迹象。
val/cls_loss(验证集的分类损失):验证集的分类损失下降趋势与训练集相似,但可能在某些点上出现波动。
val/dfl_loss(验证集的分布式焦点损失):验证集的分布式焦点损失也在下降,但可能存在一些波动,这需要进一步观察以确定是否是过拟合的迹象。
metrics/mAP50(B)(在IoU阈值为0.5时的平均精度):mAP50随着训练轮次的增加而提高,表明模型在检测任务上的整体性能在提升。
metrics/mAP50-95(B)(在IoU阈值从0.5到0.95的平均精度):mAP50-95的提高表明模型在不同IoU阈值下的性能都在提升,这是一个更严格的性能指标。
当iou阈值为0.5的时候,模型在测试集上的map可以达到74.8%。下面是一个预测图像,可以看出,我们的模型可以有效的预测出这些尺度比较小的交通目标。
结论
综上所述,基于YOLO算法的交通标志检测系统在准确性、实时性、鲁棒性方面表现出色,并且通过不断的算法改进,能够更好地适应复杂的交通环境,提高对小目标交通标志的检测能力。随着深度学习技术的不断发展,这些系统将在智能交通系统中发挥更加重要的作用。
参考文献
[1] Wu Y , Zhang K , Wang J , et al. GCWNet: A Global Context-Weaving Network for Object Detection in Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60.
[2] 聂光涛, 黄华. 光学遥感图像目标检测算法综述[J]. 自动化学报, 2021, 47(8):20.
[3] 赵文清,孔子旭,周震东等.增强小目标特征的航空遥感目标检测[J].中国图象图形学报,2021,26(03):644-653.
[4] Zhou Q , Yu C . Point RCNN: An Angle-Free Framework for Rotated Object Detection[J]. Remote Sensing, 2022, 14.
[5] Zhang, Y., Li, H., Bu, R., Song, C., Li, T., Kang, Y., & Chen, T. (2020). Fuzzy Multi-objective Requirements for NRP Based on Particle Swarm Optimization. International Conference on Adaptive and Intelligent Systems.
[6] Li X , Deng J , Fang Y . Few-Shot Object Detection on Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021(99).
[7] Su W, Zhu X, Tao C, et al. Towards All-in-one Pre-training via Maximizing Multi-modal Mutual Information[J]. arXiv preprint arXiv:2211.09807, 2022.
[8] Chen Q, Wang J, Han C, et al. Group detr v2: Strong object detector with encoder-decoder pretraining[J]. arXiv preprint arXiv:2211.03594, 2022.
[9] Liu, Shilong, et al. “Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection.” arXiv preprint arXiv:2303.05499 (2023).
[10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
[11] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.
[12] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[13] Tian Z, Shen C, Chen H, et al. Fcos: Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 9627-9636.
[14] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.
[15] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer International Publishing, 2016: 21-37.
[16] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
[17] Cai Z, Vasconcelos N. Cascade r-cnn: Delving into high quality object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 6154-6162.
[18] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
[19] Wang R, Shivanna R, Cheng D, et al. Dcn v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems[C]//Proceedings of the web conference 2021. 2021: 1785-1797.
[20] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:1706.05587, 2017.