一、引言
随着自动驾驶和智能交通系统的飞速发展,交通标志识别成为保障道路安全和提升驾驶体验的关键技术之一。准确、实时地识别道路上的限速、停车等交通标志,能有效辅助驾驶员及自动驾驶系统做出正确反应,减少交通事故发生率。
近年来,深度学习,尤其是基于卷积神经网络(CNN)的目标检测技术,如YOLO(You Only Look Once)系列,在实时交通标志识别中表现出色。YOLOv8作为YOLO最新版本,在精度和速度上均有显著提升,非常适合嵌入式和实时检测应用。
本文将介绍如何基于YOLOv8实现一个交通标志实时检测系统,重点识别限速标志、停车标志等重要交通信号。同时,结合Python开发一个简洁易用的UI界面,方便用户通过摄像头实时观察识别效果。全文还将提供完整代码及参考数据集链接,帮助你快速上手。
二、技术背景
2.1 交通标志识别的挑战
- 多样性:交通标志形状、颜色和字体多样,不同国家和地区标准差异明显。
- 环境复杂:光照变化、遮挡、运动模糊等因素影响识别效果。
- 实时性要求高:自动驾驶场景对检测速度要求极高,