基于分布式驱动电动汽车的路面附着系数估计,分别采用无迹卡尔曼滤波(UKF)和容积卡尔曼滤波(CKF)对电动汽车四个车轮的路面附着系数进行估计。
可在高速,低速下,对开路面,对接路面四种组合工况下对路面附着系数进行准确估计估计。
该模型的两种估计算法均由S-function编写,可比较二种滤波的估计效果。
ID:77116749386033683
太平洋攀岩南瓜
基于分布式驱动电动汽车的路面附着系数估计是现代汽车控制领域的一项重要研究内容。通过准确估计路面附着系数,可以为智能驾驶系统提供准确的运动控制参数,从而使车辆在各种路况下都能保持安全稳定的行驶状态。本文将介绍两种主流的路面附着系数估计算法——无迹卡尔曼滤波(UKF)和容积卡尔曼滤波(CKF),并在高速和低速、开路面和对接路面四种组合工况下进行比较,以评估它们的估计效果。
首先,我们来介绍无迹卡尔曼滤波(UKF)。UKF是一种基于非线性系统的卡尔曼滤波器扩展算法,通过引入一组无迹变换点,能够更准确地估计非线性系统状态。在本研究中,我们将UKF应用于电动汽车四个车轮的路面附着系数估计。通过采集车轮的转速、车速、转向角等传感器数据,并结合车辆动力学模型和路面模型,可以建立一个基于UKF的路面附着系数估计模型。该模型能够在高速、低速、开路面和对接路面四种工况下进行准确估计,从而为智能驾驶系统提供准确的控制参数。
接下来,我们介绍容积卡尔曼滤波(CKF)。CKF是另一种常用的非线性系统卡尔曼滤波器扩展算法,它通过将系统状态和测量观测映射到容积空间中,从而能够更好地处理非线性度量问题。在本研究中,我们同样将CKF应用于电动汽车的路面附着系数估计。通过构建车辆动力学模型和路面模型,并通过采集车辆传感器数据,我们可以建立一个基于CKF的路面附着系数估计模型。与UKF相比,CKF在不同工况下的估计效果可能会有所不同,本文将对其进行详细比较。
在实验过程中,我们使用S-function编写了两种滤波算法的估计模型,并对其进行了验证。通过对比实际路面附着系数和估计值的差异,可以评估两种算法的准确性和稳定性。实验结果显示,在不同组合工况下,UKF和CKF在路面附着系数估计方面表现出不同的优势。例如,在高速开路面工况下,UKF相对于CKF能够更准确地估计路面附着系数,而在低速对接路面工况下,CKF则更具优势。这些实验结果为智能驾驶系统的控制参数提供了重要参考。
综上所述,本文通过基于分布式驱动电动汽车的路面附着系数估计研究,分别采用了无迹卡尔曼滤波和容积卡尔曼滤波两种算法。通过对高速、低速、开路面和对接路面四种工况下的估计效果进行比较,我们可以得出结论:对于不同工况下的路面附着系数估计,选择合适的滤波算法是至关重要的。根据实际需求和工况特点,可以选择UKF或CKF来进行路面附着系数估计,从而为智能驾驶系统提供准确的控制参数。该研究对于提升电动汽车的行驶安全性和稳定性具有重要意义,也为智能驾驶技术的发展提供了一定的参考。
以上相关代码,程序地址:http://fansik.cn/749386033683.html