[LLM+AIGC] 06.零基础DeepSeek+Cherry Studio搭建个人知识库(安全论文)

近年来,人工智能技术火热发展,尤其随着ChatGPT和DeepSeek被提出,其能够基于在预训练阶段所见的模式、统计规律和知识来生成回答,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流以及完成复杂的NLP任务。基于此,为更好地学习前沿AI知识,了解LLM和AIGC应用实战,本人开启了《LLM+AIGC》专栏,一方面作为在线笔记记录和分享自己的学习过程,另一方面期望帮助更多初学者以及对LLM感兴趣的同学。知识无价人有情,希望我们都能在人生路上开心快乐、共同成长。

该系列主要涵盖三方面:

  • 原理篇——以原理介绍和论文阅读为主
  • 实战篇——以编程实现和构建自制LLM和RAG为主
  • 应用篇——以应用实践和API、Prompt探索为主

前一篇文章带领大家了解如何利用DeepSeek+Kimi自动生成PPT,以威胁情报为例进行探索。这篇文章将分享如何利用DeepSeek+Cherry Studio搭建个人知识库,以安全论文为例进行探索,大家可以结合自己需求进行尝试。基础性文章,希望对初学者有所帮助!且看且珍惜,加油 O(∩_∩)O

在这里插入图片描述

前文赏析:


一.DeepSeek接入

前面的第3篇文章我们介绍过Cherry Studio的用法,从官网下载安装如下图所示:

Cherry-Studio 是一个 面向开发者的工具或平台,主要用来帮助开发者更高效地完成工作。

在这里插入图片描述

第一步,打开硅基流动的官网,并注册。

在这里插入图片描述

第二步,注册登录后找到“API 密钥”。

在这里插入图片描述

新建API密钥,并定义一个名字“Knowledge”。

在这里插入图片描述

复制刚建立的API密钥。

  • sk-kqfqnd************czhaoxnsc

在这里插入图片描述

第三步,在设置中点击“API密钥”,并输入上面的Key。

在这里插入图片描述

点击“检查”,选择对应的模型DeepSeek-R1。至此,DeepSeek相关配置完成。

在这里插入图片描述

接下来我们将配置Cherry Studio来搭建知识库。


二.Cherry Studio搭建知识库

第一步,在本地整理知识库相关论文。

注意:作者为了方便演示,将文件夹放置在桌面,读者通常会放在一个非C盘的指定目录,后续需要持续更新知识库。

在这里插入图片描述

在这里插入图片描述

第二步,打开Cherry Studio,点击“知识库”按钮,选择“添加”。

在这里插入图片描述

第三步,根据需要添加名称和嵌入模型。其中,嵌入模型用于知识化向量检索。

在这里插入图片描述

作者的仅有硅基流动的BAAI/bge-m3模型,如下图所示。

在这里插入图片描述

注意,这里的模型即为硅基流动中“模型广场”->“嵌入”的BAAI/bge-m3模型。

在这里插入图片描述

第四步,添加目录。可以添加的文件类型很多,读者可以自行尝试,大家也可以将准备好的文件拖拽进去。

在这里插入图片描述

此时该软件会调用嵌入模型对文件夹内的文件进行向量化处理。

在这里插入图片描述

等待片刻,文件目录添加成功。

在这里插入图片描述

第五步,处理完成后,点击按钮回到对话页面,并且开启刚才创建的知识库“CyberSecurity”。

在这里插入图片描述

第六步,开始DeepSeek+Cherry Studio本地知识库的智能问答。

提示词1:
我现在需要一篇APT威胁狩猎的学术论文。

可以看到模型在调用本地知识库的知识。

在这里插入图片描述

DeepSeek生成的结果如下。

在这里插入图片描述

同时给出相关引用。

在这里插入图片描述

索引确实是作者本地知识库中的文章。

在这里插入图片描述

此外,编辑可以生成Markdown格式,方便大家作为本地存储和编辑。

在这里插入图片描述

在这里插入图片描述


三.验证本地知识库

接下来,我们简单验证大模型究竟是仅学习到本地文件的名称,还是对其内容也进行了学习。

提示词2:
请从本地知识库中给出3篇代表性大模型存在的安全问题的论文,并介绍论文提出了什么方法来解决该问题的。

在这里插入图片描述

生成结果如下图所示:

在这里插入图片描述

对应答案为:

三篇代表性大模型安全问题的论文及解决方案
1. PathSeeker: Exploring LLM Security Vulnerabilities with a Reinforcement Learning-Based Jailbreak Approach
问题:大型语言模型(LLMs)在安全对齐上仍存在漏洞,可能被恶意利用生成有害内容。
方法:PathSeeker提出了一种基于强化学习的越狱攻击方法,通过生成针对性输入来绕过模型的安全机制。该方法通过实验验证了模型的脆弱性,并强调了安全对齐技术的改进需求122. LLMSMITH——揭秘LLMs集成框架与应用中的RCE漏洞
问题:LLMs在集成框架和应用中可能引入远程代码执行(RCE)漏洞,导致严重的安全风险。
方法:LLMSMITH通过分析LLMs集成框架的架构,揭示了潜在的RCE漏洞,并提出了一种基于静态和动态分析的综合检测方法,以识别并修复这些漏洞33. Universal Fuzzing via Large Language Models
问题:LLMs在协议模糊测试中可能生成无效或不符合协议规范的输入,影响测试效果。
方法:该论文提出了一种基于LLM的通用模糊测试方法,通过引导模型生成更符合协议规范的测试用例,提高了模糊测试的覆盖率和有效性4

由于作者在大模型本身安全文件夹中,传入的是中文命名,而非论文标题,我们可以发现:

  • 论文PDF文件中的内容也被成功学习《LLMSMITH reveals and detects RCE vulnerabilities in LLM integration frameworks》

在这里插入图片描述

原文内容如下:

在这里插入图片描述


四.问题与解决

然而,上述过程存在两个关键问题:

  • 作者的本地知识库为啥没有深度思考?
  • 存在理解不准确问题。 譬如,作者希望得到关于大模型幻觉相关的问题,而非给出的结果并不太准确,当然和作者故意分类错误的文件夹名称可能也有一定关系,总之模型还需要继续学习啊!

作者后续发现,是未选中创建的DeepSeek-R1模型,对其进行修改后能进行深度思考。

在这里插入图片描述

思考界面如下所示:

在这里插入图片描述

在这里插入图片描述

此外,Cherry Studio配置过程中可能存在错误,如下图所示,读者可以结合错误代码进行搜索和解决。

在这里插入图片描述


五.总结

写到这里,这篇文章介绍结束,希望对您有所帮助!

作为原创博客创作者和程序员,大模型对我们的影响极大,拥抱变化,紧紧跟随。本文主要带领大家了解什么是LLM、AIGC、DeepSeek和ChatGPT。基础性文章,希望对您有所帮助。后续作者会继续深入,分享更多LLM和AIGC内容,加油,共勉!

2024年4月28日是Eastmount的安全星球——『网络攻防和AI安全之家』正式创建和运营的日子,该星球目前主营业务为 安全零基础答疑、安全技术分享、AI安全技术分享、AI安全论文交流、威胁情报每日推送、网络攻防技术总结、系统安全技术实战、面试求职、安全考研考博、简历修改及润色、学术交流及答疑、人脉触达、认知提升等。下面是星球的新人券,欢迎新老博友和朋友加入,一起分享更多安全知识,比较良心的星球,非常适合初学者和换安全专业的读者学习。

目前收到了很多博友、朋友和老师的支持和点赞,尤其是一些看了我文章多年的老粉,购买来感谢,真的很感动,类目。未来,我将分享更多高质量文章,更多安全干货,真心帮助到大家。虽然起步晚,但贵在坚持,像十多年如一日的博客分享那样,脚踏实地,只争朝夕。继续加油,再次感谢!

(By:Eastmount 2025-02-20 夜于贵州 http://blog.csdn.net/eastmount/ )

<think>好的,我现在要解决用户的问题,关于如何在Cherry Studio中部署DeepSeek知识库。首先,我需要回顾用户提供的引用内容,看看里面有没有相关的步骤信息。用户提到了引用[1]、[2]、[3],其中引用[2]和[3]特别提到了DeepSeekCherry Studio的本地部署和知识库搭建。 接下来,我需要整理这些引用中的信息。引用[2]提到使用DeepSeek、Ollama和Cherry Studio进行本地部署,而引用[3]则详细说明了在交互页面中点击知识库,使DeepSeek能根据提供的资料回答。这可能涉及到上传资料和配置模型的步骤。 用户需要的是一个教程,所以步骤必须清晰。我应该先列出准备工具,比如安装Cherry Studio和Ollama,然后下载DeepSeek模型。然后分步骤说明如何配置模型、上传资料、创建知识库,最后测试效果。 同时,要注意用户提到的系统级指令,比如使用正确的中文回答、生成相关问题,以及引用标识。需要确保每个引用来源的信息在适当的位置标注,比如在提到模型下载时引用[1],在部署步骤中引用[2]和[3]。 可能遇到的疑问是,是否需要详细说明Ollama的安装步骤?但用户可能已经了解,所以保持步骤简洁。另外,用户可能关心如何验证部署是否成功,所以最后的测试步骤很重要。 还需要检查是否有遗漏的步骤,例如权限设置或环境配置,但根据引用内容,可能已经覆盖主要步骤。最后,生成的相关问题要围绕部署后的应用、优化和集成,确保用户有进一步了解的途径。 现在整理成结构化的步骤,确保每个部分都有对应的引用标注,并自然融入回答中。避免技术术语过于复杂,让用户能逐步跟随操作。</think>### 逐步教程:在Cherry Studio中部署DeepSeek知识库 以下是基于引用内容的详细部署流程: 1. **环境准备** - 安装Cherry Studio(支持本地或服务器部署) - 安装Ollama框架(用于本地模型加载)[^2] - 下载DeepSeek模型文件(如`deepseek-llm-67b-chat`)[^1] 2. **模型配置** ```bash # 通过Ollama加载DeepSeek模型 ollama run deepseek-67b ``` - 在Cherry Studio中配置模型路径为本地Ollama服务地址(默认`localhost:11434`)[^2] 3. **知识库构建** - 进入Cherry Studio交互页面 - 点击`知识库`模块,创建新知识库 - 上传PDF/Word/TXT等格式的本地文档(支持批量上传)[^3] 4. **服务集成** ```python # 示例API调用代码(需替换为实际API密钥) import cherry_studio client = cherry_studio.Client(api_key="your_key") response = client.query_knowledge_base("deepseek-demo", "查询内容") ``` - 通过Cherry Studio生成API访问端点[^1] 5. **测试验证** - 在交互界面输入测试问题 - 验证回答是否包含知识库文档内容
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值