[Pyhon疫情大数据分析] 三.新闻信息抓取及词云可视化、文本聚类和LDA主题模型文本挖掘

本文介绍了如何使用Python进行疫情新闻的抓取、中文分词、词云可视化、TF-IDF计算、KMeans文本聚类、层次聚类和LDA主题模型分析。通过结巴分词进行预处理,利用WordCloud生成词云,使用Scikit-Learn进行TF-IDF计算和KMeans聚类,并借助LDA进行主题分布分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思来想去,虽然很忙,但还是挤时间针对这次肺炎疫情写个Python大数据分析系列博客,包括网络爬虫、可视化分析、GIS地图显示、情感分析、舆情分析、主题挖掘、威胁情报溯源、知识图谱、预测预警及AI和NLP应用等。希望该系列线上远程教学对您有所帮助,也希望早点战胜病毒,武汉加油、湖北加油、全国加油。待到疫情结束樱花盛开,这座英雄的城市等你们来。

首先说声抱歉,最近一直忙着学习安全知识,其他系列文章更新较慢,已经有一些人催更了,哈哈。言归正传,前文分享了腾讯疫情实时数据抓取,结合PyEcharts绘制地图、折线图、柱状图。这篇文章将爬取疫情相关的新闻数据,接着进行中文分词处理及文本聚类、LDA主题模型分析。希望这篇可视化分析文章对您有所帮助,也非常感谢参考文献中老师的分享,一起加油,战胜疫情!如果您有想学习的知识或建议,可以给作者留言~

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

代码下载地址:https://github.com/eastmountyxz/Wuhan-data-analysis
CSDN下载地址:https://download.csdn.net/download/Eastmount/12239638

要对数据集进行K-means聚类并进行评估可视化,您可以按照以下步骤操作: 首先,安装必要的库: ```bash pip install numpy pandas matplotlib sklearn ``` 1. **加载数据**[^1]: 使用`pandas`加载CSV数据集,假设数据集中有两列特征: ```python import pandas as pd data = pd.read_csv('data.csv') features = data.iloc[:, :-1] # 去除最后一列作为标签(如果有的话) ``` 2. **预处理数据**: 如果需要,可以归一化或标准化数据,以提高聚类效果: ```python from sklearn.preprocessing import StandardScaler scaler = StandardScaler() features_scaled = scaler.fit_transform(features) ``` 3. **执行K-means聚类**: ```python from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=3) # 根据实际情况选择合适的簇数 kmeans.fit(features_scaled) labels = kmeans.labels_ ``` 4. **评估聚类结果**: 可以使用轮廓系数(Silhouette Coefficient)来评估聚类质量: ```python from sklearn.metrics import silhouette_score score = silhouette_score(features_scaled, labels) print(f"Silhouette Score: {score}") ``` 5. **可视化聚类结果**[^2]: 使用`matplotlib`绘制每个样本点及其所属的簇: ```python import matplotlib.pyplot as plt colors = plt.cm.get_cmap('viridis', max(labels) + 1) plt.scatter(features_scaled[:, 0], features_scaled[:, 1], c=labels, cmap=colors) plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red', alpha=0.5) plt.title("K-Means Clustering") plt.xlabel("Feature 1") plt.ylabel("Feature 2") plt.colorbar() plt.show() ``` 完成以上步骤后,您就得到了数据集的K-means聚类结果,同时也进行了初步的评估可视化
评论 83
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值